Axioms of the Real Number System

April 22, 2013

1 Axioms of Addition and Multiplication

There exist binary operations + and \cdot on \mathbb{R}, such that:

1. These operations are associative:
(a) $\forall x, y, z \in \mathbb{R},(x+y)+z=x+(y+z)$.
(b) $\forall x, y, z \in \mathbb{R},(x \cdot y) \cdot z=x \cdot(y \cdot z)$.
2. These operations are commutative:
(a) $\forall x, y \in \mathbb{R}, x+y=y+x$.
(b) $\forall x, y \in \mathbb{R}, x \cdot y=y \cdot x$.
3. Each operation has a distinct identity element:
(a) There exists an element $0 \in \mathbb{R}$ such that, $\forall x \in \mathbb{R}, x+0=x$.
(b) There exists an element $1 \in \mathbb{R}$ such that $1 \neq 0$ and, $\forall x \in \mathbb{R}, x \cdot 1=x$.
4. All possible inverses exist:
(a) For each x in \mathbb{R}, there exists a y in \mathbb{R} such that $x+y=0$.
(b) For each x in \mathbb{R} different from 0 , there exists a y in \mathbb{R} such that $x \cdot y=1$.
5. The operation \cdot distributes over + :
$\forall x, y, z \in \mathbb{R}, x \cdot(y+z)=(x \cdot y)+(x \cdot z)$.

2 Axioms of Order with Respect to the Operations

There is a total order relation < on the real number system with the following properties:
6. The operations respect the order relation:
(a) If $x>y$, then $x+z>y+z$.
(b) If $x>y$ and $z>0$, then $x \cdot z>y \cdot z$.
7. The order relation $<$ has the least upper bound property.

Remark. We have note used the last axiom, and you do not need it for any exam question except the extra credit question on the second take-home exam.

