
ROW RANK EQUALS COLUMN RANK:
A SIMPLE & ELEMENTARY PROOF

CHARLES DELMAN AND BOGDAN V. PETRENKO

Abstract. We give a short proof of the classical result that the row rank of a matrix is equal to its
column rank. Our proof involves minimal computation and relies on only the most fundamental of
notions: dimension, the basic properties of inverse functions, and the symmetry of the identity matrix.

A familiar result in the linear algebra of finite dimensional vector spaces is that the dimension of the
vector space spanned by its columns, its column rank, is the same as the dimension of the space spanned
by its rows, its row rank. We present an elementary and accessible reason for this relationship, which
relies neither on technical computations nor on an abstract approach to duality. Instead, we introduce a
direct approach to dual transformations that makes reference to dual spaces unnecessary for our proof,
although the reader may observe that, in what follows, the maps Arow and Acol are dual to each other.

For other approaches, see for example [1, 3, 4, 5, 6]. In particular, we were inspired by Makiw’s short,
elegant, and elementary proof [5]; however, it requires a positive-definite inner product. Our proof is
valid for matrices over an arbitrary field. Such fields arise, for example, in coding theory, which relies
heavily on linear algebra over finite fields.

1. Preliminaries

We recall the following facts, which are likely familiar to many readers.
Let F be a field. We denote by Fl

col the space of column vectors with l entries in F, and similarly we
denote by Fl

row the space of row vectors with l entries in F.
Any matrix A with m rows and n columns of entries in F induces two linear maps:

Fm
col

Acol −−− Fn
col ,

obtained by multiplying the matrix A by column vectors on its right, and

Fm
row

Arow−−−! Fn
row ,

obtained by multiplying the matrix A by row vectors on its left. We have purposely denoted these maps
with oppositely-directed arrows as a visual device that reflects the side on which subsequent matrices
are applied when maps are composed. An obvious, but very useful, observation is that the identity
matrix induces the identity map in both directions.
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The map Acol is injective if and only if the columns of A are linearly independent, and surjective if and
only if they span Fm

col. Similarly, Arow is injective if and only if the rows of A are linearly independent,
and surjective if and only if they span Fn

row.1

Any set of vectors contains a basis for the space it spans. Any set of linearly independent vectors in
a space may be extended to a basis for that space. If v1, v2, v3, . . . , vl is a basis for a vector space V ,
and W is a vector space, then any function {v1, v2, v3, . . . , vl}

f
−! W extends uniquely to a linear map

V
f
−!W .
In general, given a function X

f
−! Y between any sets X and Y , there exists a function Y

g
−! X such

that the composition X
f
−! Y

g
−! X is the identity if and only if f is injective. If V

f
↪−!W is an injective

linear map, the desired map W
g
−! V may be chosen to be linear by extending (if necessary) the image

of a basis for V to a basis for W and defining g arbitrarily on basis vectors not in f(V ) (for example,
setting g(w) = 0 for such vectors). Given a function Y

g
−! X, there exists a function X

f
↪−! Y such that

X
f

↪−! Y
g
−! X is the identity if and only if g is surjective.2 If W

g−� V is a surjective linear map, the
desired map V

f
↪−! W may be chosen to be linear by selecting a basis for V and defining f(v) to be an

arbitrary element of g−1(v) for each basis element v.3

2. Proof of the Theorem

Theorem. The row rank and column rank of any matrix with entries in a field are equal.

Proof. Let A be a matrix with m rows and n columns, and let k and l denote the column and row ranks
of A, respectively. From the columns of A, choose a basis c1, c2, c3, . . . , ck for the space its columns span.
Let C be the matrix of these columns. Since they are linearly independent, the map Ccol is injective.
Therefore, there is a matrix B such that the composite map Fk

col
Bcol�−−− Fm

col
Ccol
 −−↩ Fk

col is the identity;
hence, BC = Ik. But then, applying BC = Ik to row vectors, we have Fk

row
Brow

↪−−−! Fm
row

Crow−−−� Fk
row is

the identity; hence Crow is surjective. Therefore, at least k rows of C must be linearly independent.
Clearly, when the missing coordinates from the rows of A are reinserted, the corresponding rows of A

that result remain linearly independent. Thus, k ≤ l. Applying the argument to the transpose of A

yields l ≤ k, completing the proof. �
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