MAT 2550: Quiz 2 April 3, 2019 Name: _____

- 1. Recall that the *trace* (denoted Tr) of a square matrix is the sum of its diagonal entries.
 - (a) Using two general 2×2 matrices $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ and $B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$ with real entries and a general scalar $\alpha \in \mathbb{R}$, show that $\operatorname{Tr}(A + \alpha B) = \operatorname{Tr}A + \alpha \operatorname{Tr}B$.

- (b) Is Tr a linear map from the space of 2×2 matrices with real entries to \mathbb{R} , the space of real scalars? (Please circle correct answer.) Yes No
- (c) In general, is Tr a linear map from the space of $n \times n$ matrices with real entries to \mathbb{R} , the space of real scalars? Yes No
- (d) Show that Tr: $M_{2\times 2} \to \mathbb{R}$ is surjective, where $M_{2\times 2}$ denotes the space of 2×2 matrices with real entries. (Hint: Let $\alpha \in \mathbb{R}$ be any real number. What is the trace of $\begin{pmatrix} \alpha & 0 \\ 0 & 0 \end{pmatrix}$?)

(e) Give a formula for a right (pre-) inverse for Tr: Let $\lambda : \mathbb{R} \to M_{2 \times 2}$ be defined by

$$\lambda(\alpha) = \left(\begin{array}{c} \\ \end{array} \right).$$

Then $\operatorname{Tr}\lambda(\alpha) = \alpha$ for every $\alpha \in \mathbb{R}$. (Hint: Consider the hint for the previous question! There are many correct answers, though.)

(f) Is Tr: $M_{2\times 2} \to \mathbb{R}$ is injective? Justify your answer.

2. Extend the set $\{1, 1 + x + x^2\}$ to a basis for \mathbb{P}_2 , the vector space of polynomials of degree at most 2. (There is more than one way to do this.) Verify that your set is a basis. (Hint: Since the dimension of \mathbb{P}_2 is 3, it suffices either to show you have three independent vectors or to show you have three vectors that span \mathbb{P}_2 , whichever is easier. Any independent set of three vectors must span, and any three vectors that span must be independent.)

3. Consider the matrix

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$

(a) Find its inverse matrix, A^{-1} .

(b) Write A^{-1} as the product of elementary matrices.

(c) Write A as the product of elementary matrices.

4. Suppose the matrix A is regarded as a change of basis matrix from basis $\{v_1, v_2, v_3\}$ for \mathbb{R}^3 to the standard basis $\{e_1, e_2, e_3\}$. What are v_1, v_2 , and v_3 (in standard coordinates)?

5. Let $\lambda : \mathbb{P}_2 \to \mathbb{P}_2$ be defined by $\lambda(f) = f + f'$. Provide the matrix for λ in terms of the standard basis $\{1, x, x^2\}$ for \mathbb{P}_2 .