MAT 2550: Quiz 2
Name: \qquad
April 3, 2019

1. Recall that the trace (denoted Tr) of a square matrix is the sum of its diagonal entries.
(a) Using two general 2×2 matrices $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ and $B=\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)$ with real entries and a general scalar $\alpha \in \mathbb{R}$, show that $\operatorname{Tr}(A+\alpha B)=\operatorname{Tr} A+\alpha \operatorname{Tr} B$.
(b) Is Tr a linear map from the space of 2×2 matrices with real entries to \mathbb{R}, the space of real scalars? (Please circle correct answer.)

Yes No

(c) In general, is Tr a linear map from the space of $n \times n$ matrices with real entries to \mathbb{R}, the space of real scalars? Yes No
(d) Show that $\operatorname{Tr}: M_{2 \times 2} \rightarrow \mathbb{R}$ is surjective, where $M_{2 \times 2}$ denotes the space of 2×2 matrices with real entries. (Hint: Let $\alpha \in \mathbb{R}$ be any real number. What is the trace of $\left(\begin{array}{cc}\alpha & 0 \\ 0 & 0\end{array}\right)$?)
(e) Give a formula for a right (pre-) inverse for Tr : Let $\lambda: \mathbb{R} \rightarrow M_{2 \times 2}$ be defined by

$$
\lambda(\alpha)=(\quad) .
$$

$\operatorname{Then} \operatorname{Tr} \lambda(\alpha)=\alpha$ for every $\alpha \in \mathbb{R}$. (Hint: Consider the hint for the previous question! There are many correct answers, though.)
(f) Is $\operatorname{Tr}: M_{2 \times 2} \rightarrow \mathbb{R}$ is injective? Justify your answer.
2. Extend the set $\left\{1,1+x+x^{2}\right\}$ to a basis for \mathbb{P}_{2}, the vector space of polynomials of degree at most 2. (There is more than one way to do this.) Verify that your set is a basis. (Hint: Since the dimension of \mathbb{P}_{2} is 3 , it suffices either to show you have three independent vectors or to show you have three vectors that span \mathbb{P}_{2}, whichever is easier. Any independent set of three vectors must span, and any three vectors that span must be independent.)
3. Consider the matrix

$$
A=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 2 & 0 \\
-1 & 0 & 0
\end{array}\right)
$$

(a) Find its inverse matrix, A^{-1}.
(b) Write A^{-1} as the product of elementary matrices.
(c) Write A as the product of elementary matrices.
4. Suppose the matrix A is regarded as a change of basis matrix from basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ for \mathbb{R}^{3} to the standard basis $\left\{e_{1}, e_{2}, e_{3}\right\}$. What are v_{1}, v_{2}, and v_{3} (in standard coordinates)?
5. Let $\lambda: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ be defined by $\lambda(f)=f+f^{\prime}$. Provide the matrix for λ in terms of the standard basis $\left\{1, x, x^{2}\right\}$ for \mathbb{P}_{2}.

