MAT 2550, Assignment on Rank and Nullity

April 8, 2019

1. Let λ be the linear map $\mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by orthogonal projection onto the x, y plane: $(x, y, z) \mapsto(x, y)$.
(a) What is the dimension of $\operatorname{Null}(\lambda)$?
(b) What is the dimension of $\operatorname{Ran}(\lambda)$?
(c) Provide a basis for $\operatorname{Null}(\lambda)$.
(d) Provide a basis for $\operatorname{Ran}(\lambda)$.
2. Let λ be the linear map $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by orthogonal projection onto the plane $\{(x, y, z): x=y\}$.
(a) What is the dimension of $\operatorname{Null}(\lambda)$?
(b) What is the dimension of $\operatorname{Ran}(\lambda)$?
(c) Provide a basis for $\operatorname{Null}(\lambda)$.
(d) Provide a basis for $\operatorname{Ran}(\lambda)$.
3. Let λ be the linear map $\mathbb{R}^{3} \rightarrow \mathbb{R}$ given by orthogonal projection onto the x-axis: $(x, y, z) \mapsto x$.
(a) What is the dimension of $\operatorname{Null}(\lambda)$?
(b) What is the dimension of $\operatorname{Ran}(\lambda)$?
(c) Provide a basis for $\operatorname{Null}(\lambda)$.
(d) Provide a basis for $\operatorname{Ran}(\lambda)$.
4. Let λ be the linear map $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by orthogonal projection onto the line $\{(x, y, z): x=y \& z=0\}$.
(a) What is the dimension of $\operatorname{Null}(\lambda)$?
(b) What is the dimension of $\operatorname{Ran}(\lambda)$?
(c) Provide a basis for $\operatorname{Null}(\lambda)$.
(d) Provide a basis for $\operatorname{Ran}(\lambda)$.
5. Let λ be the linear map $\mathbb{P}_{3} \rightarrow \mathbb{P}_{3}$ given by $\lambda(f)=f^{\prime}$.
(a) What is the dimension of $\operatorname{Null}(\lambda)$?
(b) What is the dimension of $\operatorname{Ran}(\lambda)$?
(c) Provide a basis for $\operatorname{Null}(\lambda)$.
(d) Provide a basis for $\operatorname{Ran}(\lambda)$.
6. Let λ be the linear map $\mathbb{P}_{3} \rightarrow \mathbb{P}_{3}$ given by $\lambda(f)=f^{\prime \prime}$.
(a) What is the dimension of $\operatorname{Null}(\lambda)$?
(b) What is the dimension of $\operatorname{Ran}(\lambda)$?
(c) Provide a basis for $\operatorname{Null}(\lambda)$.
(d) Provide a basis for $\operatorname{Ran}(\lambda)$.
7. Let λ be the linear map $\mathbb{P}_{3} \rightarrow \mathbb{P}_{3}$ given by $\lambda(f)=f^{\prime}+f^{\prime \prime}$.
(a) What is the dimension of $\operatorname{Null}(\lambda)$?
(b) What is the dimension of $\operatorname{Ran}(\lambda)$?
(c) Provide a basis for $\operatorname{Null}(\lambda)$.
(d) Provide a basis for $\operatorname{Ran}(\lambda)$.
8. Suppose M is the matrix for a surjective linear map. Prove that the rows of M_{λ} are linearly independent.
9. Suppose M_{λ} is the matrix for an injective linear map $\lambda: V \rightarrow W$. Prove that the rows of M_{λ} span V.
10. A few problems from the text: Section 4.2, \# 36, 38, 40.
