Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-value Functions

Additional Properties of Vector-Valueo Limits

Derivatives and Integrals of Vector-Valued Functions

Calculus of Vector-valued Functions of a Real Variable

Charles Delman

February 9, 2014

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals of Vector-Valued Functions

1 Review of the Limit Concept

2 Extension to Vector-valued Functions

3 Additional Properties of Vector-Valued Limits

4 Derivatives and Integrals of Vector-Valued Functions

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Values Limits

Derivatives and Integrals of Vector-Valueo Functions

- 1 What is $\lim_{x\to 0} \frac{\sin x}{x}$?
- 2 What is $\lim_{x\to 0} x^2$?
- 3 What is $\lim_{x\to 0} \frac{x^3}{x}$?
- 4 What is $\lim_{x\to 0} 10x^2$?
- **5** What is $\lim_{x\to 0} 100x^2$?
- **6** Is $\lim_{x\to 0} \sin(\frac{1}{x}) = 0$?

. . .

. . .

- **7** Is $\lim_{x\to 0} (.1) \sin(\frac{1}{x}) = 0$?
- 8 Is $\lim_{x\to 0} (.01) \sin(\frac{1}{x}) = 0?$

9 Is $\lim_{x\to 0} x \sin(\frac{1}{x}) = 0$?

1

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Values Limits

Derivatives and Integrals of Vector-Valueo Functions

- 1 What is $\lim_{x\to 0} \frac{\sin x}{x}$?
- 2 What is $\lim_{x\to 0} x^2$?
- 3 What is $\lim_{x\to 0} \frac{x^3}{x}$?
- 4 What is $\lim_{x\to 0} 10x^2$?
- 5 What is $\lim_{x\to 0} 100x^2$?
- **6** Is $\lim_{x\to 0} \sin(\frac{1}{x}) = 0$?

. . .

. . .

- 7 Is $\lim_{x\to 0} (.1) \sin(\frac{1}{x}) = 0?$
- 8 Is $\lim_{x\to 0} (.01) \sin(\frac{1}{x}) = 0?$
- 9 Is $\lim_{x\to 0} x \sin(\frac{1}{x}) = 0$?

1

n

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Values Limits

Derivatives and Integrals of Vector-Valueo Functions

- 1 What is $\lim_{x\to 0} \frac{\sin x}{x}$?
- 2 What is $\lim_{x\to 0} x^2$?
- 3 What is $\lim_{x\to 0} \frac{x^3}{x}$?
- 4 What is $\lim_{x\to 0} 10x^2$?
- 5 What is $\lim_{x\to 0} 100x^2$?
- **6** Is $\lim_{x\to 0} \sin(\frac{1}{x}) = 0$?

. . .

. . .

- 7 Is $\lim_{x\to 0} (.1) \sin(\frac{1}{x}) = 0$?
- 8 Is $\lim_{x\to 0} (.01) \sin(\frac{1}{x}) = 0?$
- 9 Is $\lim_{x\to 0} x \sin(\frac{1}{x}) = 0$?

1

n

0

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Values Limits

Derivatives and Integrals of Vector-Valueo Functions

- 1 What is $\lim_{x\to 0} \frac{\sin x}{x}$? 2 What is $\lim_{x\to 0} x^2$?
- 3 What is $\lim_{x\to 0} \frac{x^3}{x}$?
- 4 What is $\lim_{x\to 0} 10x^2$?
- 5 What is $\lim_{x\to 0} 100x^2$?
- **6** Is $\lim_{x\to 0} \sin(\frac{1}{x}) = 0$?

. . .

. . .

- 7 Is $\lim_{x\to 0} (.1) \sin(\frac{1}{x}) = 0?$
- **8** Is $\lim_{x\to 0} (.01) \sin(\frac{1}{x}) = 0$?
- 9 Is $\lim_{x\to 0} x \sin(\frac{1}{x}) = 0$?

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Values Limits

Derivatives and Integrals of Vector-Valueo Functions

- 1 What is $\lim_{x\to 0} \frac{\sin x}{x}$? 2 What is $\lim_{x\to 0} x^2$? 3 What is $\lim_{x\to 0} \frac{x^3}{x}$? 4 What is $\lim_{x\to 0} 10x^2$? 5 What is $\lim_{x\to 0} 100x^2$?
- $6 \quad \text{Is } \lim_{x \to 0} \sin(\frac{1}{x}) = 0?$

. . .

. . .

- 7 Is $\lim_{x\to 0} (.1) \sin(\frac{1}{x}) = 0?$
- 8 Is $\lim_{x\to 0} (.01) \sin(\frac{1}{x}) = 0?$
- 9 Is $\lim_{x\to 0} x \sin(\frac{1}{x}) = 0$?

1 0 0

cin v a

1

n

0

0

Λ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Values Limits

1 What is $\lim_{x\to 0} \frac{\sin x}{x}$?
2 What is $\lim_{x\to 0} x^2$?
3 What is $\lim_{x\to 0} \frac{x^3}{x}$?
4 What is $\lim_{x\to 0} 10x^2$?
5 What is $\lim_{x\to 0} 100x^2$?
6 Is $\lim_{x\to 0} \sin(\frac{1}{x}) = 0$?
7 Is $\lim_{x\to 0} (.1) \sin(\frac{1}{x}) = 0?$
8 Is $\lim_{x\to 0} (.01) \sin(\frac{1}{x}) = 0?$
$ Is \lim_{x\to 0} x \sin(\frac{1}{x}) = 0? $

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valued Limits

1 What is $\lim_{x\to 0} \frac{\sin x}{x}$?	1
2 What is $\lim_{x\to 0} x^2$?	0
3 What is $\lim_{x\to 0} \frac{x^3}{x}$?	0
4 What is $\lim_{x\to 0} 10x^2$?	0
5 What is $\lim_{x\to 0} 100x^2$?	0
6 Is $\lim_{x\to 0} \sin(\frac{1}{x}) = 0$? $sin(\frac{1}{x})$ does not approach any limit as $x \to 0$. The specified limit does not exist.	No.
7 Is $\lim_{x\to 0} (.1) \sin(\frac{1}{x}) = 0?$	
B Is $\lim_{x\to 0} (.01) \sin(\frac{1}{x}) = 0$?	
$ Is \lim_{x\to 0} x \sin(\frac{1}{x}) = 0? $	
(日) (四) (三) (三) (三) (三) (三) (三) (三) (三) (三) (三	≣

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valued Limits

1 What is $\lim_{x\to 0} \frac{\sin x}{x}$?	1
2 What is $\lim_{x\to 0} x^2$?	0
3 What is $\lim_{x\to 0} \frac{x^3}{x}$?	0
4 What is $\lim_{x\to 0} 10x^2$?	0
5 What is $\lim_{x\to 0} 100x^2$?	0
6 Is $\lim_{x\to 0} \sin(\frac{1}{x}) = 0$? $sin(\frac{1}{x})$ does not approach any lin The specified limit does not exist	
7 Is $\lim_{x\to 0} (.1) \sin(\frac{1}{x}) = 0$?	No. It does not exist.
8 Is $\lim_{x\to 0} (.01) \sin(\frac{1}{x}) = 0?$	
$\bigcup_{x \to 0} x \sin(\frac{1}{x}) = 0?$	
	・ロン・雪と・雪と、雪、 ろんの

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valued Limits

1 What is $\lim_{x\to 0} \frac{\sin x}{x}$?	1
2 What is $\lim_{x\to 0} x^2$?	0
3 What is $\lim_{x\to 0} \frac{x^3}{x}$?	0
4 What is $\lim_{x\to 0} 10x^2$?	0
5 What is $\lim_{x\to 0} 100x^2$?	0
6 Is $\lim_{x\to 0} sin(\frac{1}{x}) = 0$? $sin(\frac{1}{x})$ does not approach any lin The specified limit does not exist	
7 Is $\lim_{x\to 0} (.1) \sin(\frac{1}{x}) = 0?$	No. It does not exist.
B Is $\lim_{x\to 0} (.01) \sin(\frac{1}{x}) = 0$?	No. It does not exist.
9 Is $\lim_{x\to 0} x \sin(\frac{1}{x}) = 0$?	
	<□> <□> <□> <□> < □> < □> < □> < □> < □

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valued Limits

1 What is $\lim_{x\to 0} \frac{\sin x}{x}$?	1
2 What is $\lim_{x\to 0} x^2$?	0
3 What is $\lim_{x\to 0} \frac{x^3}{x}$?	0
4 What is $\lim_{x\to 0} 10x^2$?	0
5 What is $\lim_{x\to 0} 100x^2$?	0
6 Is $\lim_{x\to 0} \sin(\frac{1}{x}) = 0$? $\sin(\frac{1}{x})$ does not approach any I The specified limit does not ex	
7 Is $\lim_{x\to 0} (.1) \sin(\frac{1}{x}) = 0?$	No. It does not exist.
B Is $\lim_{x\to 0} (.01) \sin(\frac{1}{x}) = 0?$	No. It does not exist.
9 Is $\lim_{x\to 0} x \sin(\frac{1}{x}) = 0$?	Yes!
	・ロン・雪と・言と、言、 しんぐ

Exercises: Evaluate Each Limit at Infinity

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-value Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals of Vector-Valued Functions

$$\lim_{x\to\infty}\frac{1}{x}$$

 $2 \lim_{x \to -\infty} \frac{1}{x}$

3
$$\lim_{x\to\infty}\frac{1+x}{x}$$

4
$$\lim_{x\to\infty} \frac{\sqrt{x^2}}{x}$$

5
$$\lim_{x \to -\infty} \frac{\sqrt{x^2}}{x}$$

Exercises: Evaluate Each Limit at Infinity

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-value Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals of Vector-Valued Functions

$$\lim_{x\to\infty}\frac{1}{x}=0$$

 $\lim_{x\to -\infty} \frac{1}{x} = 0$

3
$$\lim_{x\to\infty}\frac{1+x}{x}$$

4
$$\lim_{x\to\infty} \frac{\sqrt{x^2}}{x}$$

5
$$\lim_{x \to -\infty} \frac{\sqrt{x^2}}{x}$$

Exercises: Evaluate Each Limit at Infinity

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-value Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals of Vector-Valued Functions

$$\lim_{x\to\infty}\frac{1}{x}=0$$

 $\lim_{x\to -\infty} \frac{1}{x} = 0$

3
$$\lim_{x\to\infty}\frac{1+x}{x}=1$$

4
$$\lim_{x\to\infty} \frac{\sqrt{x^2}}{x}$$

5
$$\lim_{x \to -\infty} \frac{\sqrt{x^2}}{x}$$

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-value Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals of Vector-Valueo Functions

$$\lim_{x\to\infty}\frac{1}{x}=0$$

 $\lim_{x \to -\infty} \frac{1}{x} = 0$

$$\lim_{x\to\infty}\frac{1+x}{x}=1$$

$$4 \quad \lim_{x \to \infty} \frac{\sqrt{x^2}}{x} = 1$$

5
$$\lim_{x \to -\infty} \frac{\sqrt{x^2}}{x} = -1$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Value Limits

Derivatives and Integrals of Vector-Valueo Functions

$$\lim_{x \to \infty} \frac{\sin x}{x}$$

 $\lim_{x\to -\infty} \frac{\sin x}{x}$

 $\lim_{x \to \infty} \sin\left(\frac{1}{x}\right)$

 $\bigcirc \lim_{x \to -\infty} \sin\left(\frac{1}{x}\right)$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Value Limits

Derivatives and Integrals of Vector-Valued Functions

$$\lim_{x \to \infty} \frac{\sin x}{x} = 0$$

7
$$\lim_{x \to -\infty} \frac{\sin x}{x} = 0$$

 $\lim_{x \to \infty} \sin\left(\frac{1}{x}\right)$

 $\bigcirc \lim_{x \to -\infty} \sin\left(\frac{1}{x}\right)$

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Value Limits

Derivatives and Integrals of Vector-Valued Functions

$$\lim_{x \to \infty} \frac{\sin x}{x} = 0$$

$$\frac{1}{2} \lim_{x \to -\infty} \frac{\sin x}{x} = 0$$

$$\lim_{x \to \infty} \sin\left(\frac{1}{x}\right) = 0$$

9 $\lim_{x\to-\infty}\sin\left(\frac{1}{x}\right)=0$

Informal Definitions of Some Types of Limits

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Values Limits

Derivatives and Integrals of Vector-Valued Functions The limit of a sequence, which is just a function of positive whole numbers: lim_{n→∞} f(n) = L if (and only if) the output value f(n) stays arbitrarily close to L as long as n is sufficiently large.

• Example:
$$\lim_{n \to \infty} \frac{n+1}{n} = 1$$

The limit of a function of a real variable as its input approaches a specified value: lim_{x→a} f(x) = L if (and only if) the output value f(x) stays arbitrarily close to L as long as x is sufficiently close to a.

Exercise: Evaluate the Limit, If It Exists

Exercise: Evaluate the Limit, If It Exists

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals of Vector-Valued Functions

It does not exist. But we can consider the weaker notion of a limit as the input approaches from the left (below) or right (above). These do exist:

$$\lim_{x \to 0^-} \frac{\sin x}{|x|} = -1$$
$$\lim_{x \to 0^+} \frac{\sin x}{|x|} = 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Informal Definitions of Left and Right Limits

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-value Functions

Additional Properties of Vector-Valueo Limits

Derivatives and Integrals of Vector-Valued Functions

- The limit of a function of a real variable as its input approaches a specified value from the left (below): $\lim_{x\to a^{-}} f(x) = L$ if (and only if) the output value f(x)stays *arbitrarily* close to L as long as x is *sufficiently* close to a and also *less than a*.
- The limit of a function of a real variable as its input approaches a specified value from the right (above): lim_{x→a+} f(x) = L if (and only if) the output value f(x) stays *arbitrarily* close to L as long as x is *sufficiently* close to a and also greater than a.

Formal & Precise Definition: Finite Limit at a Finite Value

(

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valueo Limits

Derivatives and Integrals of Vector-Valued Functions **Definition.** $\lim_{x \to a} f(x) = L$ if (and only if), given any positive real number ϵ , there is a positive real number δ such that

$$0 < |x - a| < \delta \Rightarrow |f(x) - L| < \epsilon$$

- Remark: The condition that 0 < |x a| < δ means that the value of x is within δ of a, but not equal to a. The limit at a requires nothing when the value of x is equal to a, where the value of f(x) may be undefined.
- Remark: The consequence that |f(x) L| < e means that the value of f(x) is within e of the limiting value L. It is does not matter whether or not f(x) is equal to L for some values of x satisfying the condition, hence there is no requirement that 0 < |f(x) - L|.</p>

Illustrative Contrasting Examples

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valueo Limits

Derivatives and Integrals of Vector-Valued Functions

- For example, if the function f is a constant function defined by f(x) = c, c ∈ ℝ, and if a is any real number, lim_{x→a} f(x) = c because f(x) = c, and hence |f(x) c| = |c c| = 0 < ε, for every value of x.
- On the other hand, if the function g is defined by g(x) = x²/x, then lim_{x→0} g(x) = 0, even though g(x) is not equal to 0 for any value of x. Note that g(x) is not defined for x = 0; 0 is not in the domain of g.
 - These examples illustrate the importance of attention to details in a precise definition.

Formal & Precise Definition: Finite Limits from the Left & Right

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals of Vector-Valued Functions **Definition.** $\lim_{x\to a^-} f(x) = L$ if (and only if), given any positive real number ϵ , there is a positive real number δ such that

$$a - \delta < x < a \Rightarrow |f(x) - L| < \epsilon.$$

Exercise:

■ Provide a precise, formal definition: lim_{x→a⁺} f(x) = L if (and only if)

Formal & Precise Definition: Limits at Infinity

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals of Vector-Valued Functions

- Just as x being sufficiently close to, but not equal to, a means that 0 < |x − a| < δ, where δ a sufficiently small positive real number, x being sufficiently close to +∞ means that x > N, for some sufficiently large positive real number N. (Obviously, x will never equal +∞.)
- It is customary to take *N* to be a natural number.
- \blacksquare Thus we make the definition of a finite limit at $+\infty$ formal as follows:

Definition. $\lim_{x \to +\infty} f(x) = L$ if (and only if), given any positive real number ϵ , there is a positive integer N such that

$$x > N \Rightarrow |f(x) - L| < \epsilon.$$

Exercise: Provide a Precise & Formal Definition

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Theorem: The Limit of a Sum is the Sum of the Limits

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valueo Limits

Derivatives and Integrals of Vector-Valued Functions

Theorem

If
$$\lim_{x\to a} f(x)$$
 and $\lim_{x\to a} g(x)$ exist and are finite, then
 $\lim_{x\to a} f(x) + g(x) = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$.

Applying the Theorem:

- Example: $\lim_{x \to 0} \frac{\sin x}{x} + x^2 = 1 + 0 = 1.$
- Example: The theorem does not apply to $\lim_{x\to 0} \frac{\sin x}{x} + \frac{1}{x}$, since $\lim_{x\to 0} \frac{1}{x}$ does not exist.
- Example: The theorem does not apply to $\lim_{x\to 0} \frac{\sin x}{x} + \frac{1}{x^2}$, since $\lim_{x\to 0} \frac{1}{x^2} = \infty$ is not finite.

How to Show a Theorem is True

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals of Vector-Valued Functions

- The consequence of the theorem need only hold for instances that satisfy the condition.
- If the condition is false, there is nothing to show!
- Therefore, to show that the theorem is true, we assume the condition is true; under this assumption, we must logically demonstrate the truth of the consequence.
- Please note that this assumption is *provisional*; the condition is certainly not true in all instances!
- Please also note that we must take care to assume nothing beyond the stated condition.

Restating the Theorem Often Helps

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals of Vector-Valued Functions Some labels make both the condition and the consequence easier to state and work with:

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Let
$$\lim_{x \to a} f(x) = L$$
.

restatement of the theorem:

Theorem

If
$$\lim_{x\to a} f(x) = L$$
 and $\lim_{x\to a} g(x) = M$, then
 $\lim_{x\to a} f(x) + g(x) = L + M$.

Using Definitions to Work with the Condition

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valueo Limits

Derivatives and Integrals of Vector-Valued Functions

- The condition that lim_{x→a} f(x) = L means that we can make |f(x) L| as small as we like, as long as x is sufficiently close to a; sufficiently close means 0 < |x a| < δ, for a suitable positive real number of δ.
- Similarly, we can make |g(x) M| as small as we like.
- Key point: for the smaller value of δ , both |f(x) L| and |g(x) M| will be as small as we like.

So ... how small do we need them to be?

Using Definitions to Work with the Consequence

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals of Vector-Valued Functions The consequence that $\lim_{x\to a} f(x) + g(x) = L + M$ means, given any positive real number ϵ , there is a positive real number δ such that $0 < |x - a| < \delta$ is sufficient to ensure that $|f(x) + g(x) - (L + M)| < \epsilon$ (that is, $0 < |x - a| < \delta \Rightarrow |f(x) + g(x) - (L + M)| < \epsilon$).

To show this is true, we must consider an arbitrary positive real number ε and show that a suitable δ exists for that ε.

• We will find a suitable δ by making |f(x) - L| and |g(x) - M| small enough to ensure that $|f(x) + g(x) - (L + M)| < \epsilon$.

A Picture Shows Why the Theorem is True

Conclusion of the Proof!

Theorem: The Limit of a Product is the Product of the Limits

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valueo Limits

Derivatives and Integrals of Vector-Valued Functions

Theorem

If $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist and are finite, then $\lim_{x\to a} f(x)g(x) = \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x)$.

Applying the Theorem:

• Example:
$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right) \left(\frac{x^2 + 2x}{x} \right) = (1)(2) = 2.$$

• Letting $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$, we again have a restatement in a form that is easier to prove:

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Theorem

If
$$\lim_{x\to a} f(x) = L$$
 and $\lim_{x\to a} g(x) = M$, then
 $\lim_{x\to a} f(x)g(x) = LM$.

Using Definitions to With the Condition and the Consequence

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals of Vector-Valued Functions

- Again, our condition tells us that we can make |f(x) L| and |g(x) - M| as small as we like, as long as 0 < |x - a| < δ, for a suitable positive real number of δ in each case.
- Again, a simple but key observation is that a single choice of δ will work in both cases.
- Again, we must consider an arbitrary positive real number *ϵ*. To prove the current theorem, we must show that a suitable δ exists to ensure that |*f*(*x*)*g*(*x*) − *LM*| < *ϵ*..
- Again will find a suitable δ by making |f(x) L| and |g(x) M| small enough to ensure that $|f(x)g(x) LM| < \epsilon$.
- So ... how small do we need them to be?

A Picture Shows Why the Theorem is True

The Conclusion of the Proof!

The Limit of a Constant Function

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals of Vector-Valued Functions

Theorem

If c is any real number, $\lim_{x\to a} c = c$.

This rather obvious fact follows directly from the definition of limit:

Proof.

Given any positive real number ϵ , let $\delta = 1$, or anything else you like! $0 < |x - a| < 1 \Rightarrow |c - c| = 0 < \epsilon$.

All That is Needed to Define Limits is a Notion of Distance

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals of Vector-Valued Functions

- For real numbers x and a, 0 < |x a| < δ just says, "The distance between x and L is less than δ and greater than 0 (hence x ≠ a)."</p>
- For real numbers f(x) and L, |f(x) − L| < ε just says,
 "The distance between x and L is less than ε."
- All of the previous definitions and theorems for finite limits generalize immediately to vector-valued functions (including those with vector inputs), except that we can only multiply and divide by scalars. (In higher dimensions, you can "go to infinity" in infinitely many ways.)
- All that is required is to replace absolute value with the more general concept of the magnitude of a vector.

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals of Vector-Valued Functions

- Decide which of the definitions and theorems on limits of real-valued functions extend in some form to vector-valued functions.
- Formulate general versions of these definitions and theorems.
- Make the necessary substitutions in the proofs of the theorems.
- Recall the definition of continuity and extend it to vector-valued functions.

Next let's use visualization to understand how limits work in higher dimensions.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Visualizing $B_{\epsilon}(\mathbf{u}) = \{\mathbf{v} \in \mathbb{R}^n : |\mathbf{v} - \mathbf{u}| < \epsilon\}$

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-value Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals of Vector-Valued Functions

- n = 1: B_ε(**u**) is the open interval of radius ε centered at **u**.
 n = 2: B_ε(**u**) is the open disk of radius ε centered at **u**.
 n = 2: B_ε(**u**) is the open hall of radius ε centered at **u**.
- n = 3: $B_{\epsilon}(\mathbf{u})$ is the open *ball* of radius ϵ centered at \mathbf{u} .

Visualizing

$$C_{\epsilon}(\mathbf{u}) = \{\mathbf{v} \in \mathbb{R}^n : |v_i - u_i| < \epsilon\}, i = 1, ..., n\}$$

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals of Vector-Valued Functions

- n = 1: C_ε(**u**) is the open interval of radius ε centered at **u**.
 n = 2: B_ε(**u**) is the open square of radius ε centered at **u**, where the radius means the distance from the center to a side.
- n = 3: $B_{\epsilon}(\mathbf{u})$ is the open *cube* of radius ϵ centered at \mathbf{u} , where radius means the distance from the center to a face.

 $B_{\epsilon}(\mathbf{u}) \subset C_{\epsilon}(\mathbf{u})$

> Charles Delman

Review of the Limit Concept

Extension to Vector-value Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals of Vector-Valued Functions

$$\sqrt{\sum_{i=1}^{n} (v_i - u_i)^2} < \epsilon \Rightarrow$$
$$|v_i - u_i| = \sqrt{(v_i - u_i)^2} \le \sqrt{\sum_{i=1}^{n} (v_i - u_i)^2} < \epsilon$$

n=3

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $C_{rac{\epsilon}{\sqrt{n}}}({f u})\subset B_\epsilon({f u})$

> Charles Delman

Review of the Limit Concept

Extension to Vector-value Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals of Vector-Valued Functions

$$|v_i - u_i| < \frac{\epsilon}{\sqrt{n}}, i = 1, \dots, n \Rightarrow$$

$$\sqrt{\sum_{i=1}^n (v_i - u_i)^2} < \sqrt{\sum_{i=1}^n (\frac{\epsilon}{\sqrt{n}})^2} = \sqrt{\sum_{i=1}^n \frac{\epsilon^2}{n}} = \sqrt{\epsilon^2} = \epsilon$$

n=1

n=2

n=3

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

It Follows that Limits May be Computed Coordinate by Coordinate

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals of Vector-Valued Functions

Theorem

$$\lim_{t\to a} \mathbf{v}(t) = \left(\lim_{t\to a} v_1(t), \dots, \lim_{t\to a} v_n(t)\right)$$

Proof.

(Idea; details will be worked out in class.) If we can make $\mathbf{v}(t)$ arbitrarily close to a limiting vector when t is sufficiently close to (but not equal to) a, then we can make each coordinate just as close. (The ball is inside the cube.) Conversely, if we can make each coordinate $v_i(t)$ arbitrarily close to a limit, then we can make $\mathbf{v}(t)$ close, too. (A smaller cube, with radius shrunk by the factor $\frac{1}{\sqrt{n}}$, is inside the ball.)

Analogous results apply to sequential limits and limits at infinity.

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals of Vector-Valued Functions Define what it means for a vector-valued function **f** to be continuous at *a*.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

2 Prove that
$$\lim_{t \to a} \mathbf{v} \cdot \mathbf{w} = \lim_{t \to a} \mathbf{v} \cdot \lim_{t \to a} \mathbf{w}$$
.

3 Prove that
$$\lim_{t\to a} \mathbf{v} \times \mathbf{w} = \lim_{t\to a} \mathbf{v} \times \lim_{t\to a} \mathbf{w}$$
.

The Definitions of the Derivative and Riemann Integral Extend in the Obvious Way

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-value Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals of Vector-Valued Functions

- Let $\mathbf{v} = \mathbf{f}(t)$, a vector-valued function of t.
- All that is required for the following definitions is addition and scalar multiplication:

$$\mathbf{v}' = \mathbf{f}'(t) = \lim_{\Delta t o 0} rac{\mathbf{f}(t+\Delta t) - \mathbf{f}(t)}{\Delta t}$$

(if this limit exists, in which case **f** is called *differentiable*).

$$\int_{a}^{b} \mathbf{f}(t) dt = \lim_{n \to \infty} \sum_{i=1}^{n} \mathbf{f}(t_{i}^{*}) \Delta t$$

(if this limit exists), where $a = t_0, t_1, t_2, \ldots, t_n = b$ is a partition of the interval $[a, b], \Delta t = \frac{b-a}{n}$, the width of each subinterval, and $t_i^* \in [t_{i-1}, t_i]$ (in which case **f** is called *Riemann integrable*).

Exercises

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valueo Limits

Derivatives and Integrals of Vector-Valued Functions

- Prove the sum and scalar multiplication rules for differentiation of vector-valued functions.
- 2 Prove the sum and scalar multiplication rules for integration of vector-valued functions.
- The results above show that differentiation and integration are *linear operators*.
 - **3** Prove the rule for exchanging the limits of integration.
- Let $\mathbf{f}(t) = \langle f_1(t), \dots, f_n(t) \rangle$ 4 Prove that $\mathbf{f}'(t) = \langle f_1'(t), \dots, f_n'(t) \rangle$. 5 Prove that $\int_a^b \mathbf{f}(t) dt = \langle \int_a^b \mathbf{f}_1(t) dt, \dots, \int_a^b \mathbf{f}_n(t) dt \rangle$.

On account of the results above, the Mean Value Theorem & Fundamental Theorem of Calculus apply to vector-valued functions.

The General Product Rule

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-value Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals of Vector-Valued Functions

- Any bilinear product will satisfy a product rule analogous to (fg)' = f'g + fg'.
- To see this, first recall the proof of the product rule: Let y = f(x), z = g(x), $y + \Delta y = f(x + \Delta x)$, $z + \Delta z = g(x + \Delta x)$. Thus $\Delta(yz) = (y + \Delta y)(z + \Delta z) - yz = (\Delta y)z + y\Delta z + \Delta y\Delta z$, and we have

$$yz)' = \lim_{\Delta x \to 0} \frac{\Delta(yz)}{\Delta x} = \lim_{\Delta x \to 0} \frac{(\Delta y)z + y\Delta z + \Delta y\Delta z}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{(\Delta y)}{\Delta x} z + y \lim_{\Delta x \to 0} \frac{\Delta z}{\Delta x} + \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \Delta z$$
$$= y'z + yz' + (y')(0) = y'z + yz'$$

The General Product Rule (Continued)

Calculus of Vector-valued Functions of a Real Variable

> Charles Delman

Review of the Limit Concept

Extension to Vector-value Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals of Vector-Valued Functions This proof depends only on the bilinearity of ordinary multiplication, which is just the distributive property:
 a(b + c) = ab + ac, (a + b)c = ac + bc.

This picture says it all!

- Now you try! Prove that $(\mathbf{u} \cdot \mathbf{v})' = \mathbf{u}' \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{v}'$.
- Note that we don't need commutativity, so the proof will work for the cross product as well.
- Prove that $(\mathbf{u} \times \mathbf{v})' = \mathbf{u}' \times \mathbf{v} + \mathbf{u} \times \mathbf{v}'$