Calculus of Vector-valued Functions of a Real Variable

Charles Delman

February 9, 2014

Calculus of Vector-valued Functions of a Real Variable Charles Delman

Review of the Limit Concept

1 Review of the Limit Concept

2 Extension to Vector-valued Functions

3 Additional Properties of Vector-Valued Limits

4 Derivatives and Integrals of Vector-Valued Functions

Exercises: Evaluate the Limits

1 What is $\lim _{x \rightarrow 0} \frac{\sin x}{x}$?
2 What is $\lim _{x \rightarrow 0} x^{2}$?
3 What is $\lim _{x \rightarrow 0} \frac{x^{3}}{x}$?
4 What is $\lim _{x \rightarrow 0} 10 x^{2}$?
5 What is $\lim _{x \rightarrow 0} 100 x^{2}$?

6 Is $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)=0$?
7 Is $\lim _{x \rightarrow 0}(.1) \sin \left(\frac{1}{x}\right)=0$?
8 Is $\lim _{x \rightarrow 0}(.01) \sin \left(\frac{1}{x}\right)=0$?
9 Is $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$?

Exercises: Evaluate the Limits

1 What is $\lim _{x \rightarrow 0} \frac{\sin x}{x}$?
2 What is $\lim _{x \rightarrow 0} x^{2}$?
3 What is $\lim _{x \rightarrow 0} \frac{x^{3}}{x}$?
4 What is $\lim _{x \rightarrow 0} 10 x^{2}$?
5 What is $\lim _{x \rightarrow 0} 100 x^{2}$?

6 Is $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)=0$?
7 Is $\lim _{x \rightarrow 0}(.1) \sin \left(\frac{1}{x}\right)=0$?
8 Is $\lim _{x \rightarrow 0}(.01) \sin \left(\frac{1}{x}\right)=0$?
9 Is $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$?

Exercises: Evaluate the Limits

1 What is $\lim _{x \rightarrow 0} \frac{\sin x}{x}$?
2 What is $\lim _{x \rightarrow 0} x^{2}$?
3 What is $\lim _{x \rightarrow 0} \frac{x^{3}}{x}$?
4 What is $\lim _{x \rightarrow 0} 10 x^{2}$?
5 What is $\lim _{x \rightarrow 0} 100 x^{2}$?

6 Is $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)=0$?
7 Is $\lim _{x \rightarrow 0}(.1) \sin \left(\frac{1}{x}\right)=0$?
8 Is $\lim _{x \rightarrow 0}(.01) \sin \left(\frac{1}{x}\right)=0$?
9 Is $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$?

Exercises: Evaluate the Limits

1 What is $\lim _{x \rightarrow 0} \frac{\sin x}{x}$?
2 What is $\lim _{x \rightarrow 0} x^{2}$?
3 What is $\lim _{x \rightarrow 0} \frac{x^{3}}{x}$?
4 What is $\lim _{x \rightarrow 0} 10 x^{2}$?
5 What is $\lim _{x \rightarrow 0} 100 x^{2}$?

6 Is $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)=0$?
7 Is $\lim _{x \rightarrow 0}(.1) \sin \left(\frac{1}{x}\right)=0$?
8 Is $\lim _{x \rightarrow 0}(.01) \sin \left(\frac{1}{x}\right)=0$?
9 Is $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$?

Exercises: Evaluate the Limits

1 What is $\lim _{x \rightarrow 0} \frac{\sin x}{x}$?
2 What is $\lim _{x \rightarrow 0} x^{2}$?
3 What is $\lim _{x \rightarrow 0} \frac{x^{3}}{x}$?
4 What is $\lim _{x \rightarrow 0} 10 x^{2}$?
5 What is $\lim _{x \rightarrow 0} 100 x^{2}$?

6 Is $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)=0$?
7 Is $\lim _{x \rightarrow 0}(.1) \sin \left(\frac{1}{x}\right)=0$?
8 Is $\lim _{x \rightarrow 0}(.01) \sin \left(\frac{1}{x}\right)=0$?
9 Is $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$?

Exercises: Evaluate the Limits

1 What is $\lim _{x \rightarrow 0} \frac{\sin x}{x}$? 1
2 What is $\lim _{x \rightarrow 0} x^{2}$?
(3) What is $\lim _{x \rightarrow 0} \frac{x^{3}}{x}$?

4 What is $\lim _{x \rightarrow 0} 10 x^{2}$?
5 What is $\lim _{x \rightarrow 0} 100 x^{2}$?

6 Is $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)=0$?
7 Is $\lim _{x \rightarrow 0}(.1) \sin \left(\frac{1}{x}\right)=0$?
8 Is $\lim _{x \rightarrow 0}(.01) \sin \left(\frac{1}{x}\right)=0$?
9 Is $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$?

Exercises: Evaluate the Limits

1 What is $\lim _{x \rightarrow 0} \frac{\sin x}{x}$?
2 What is $\lim _{x \rightarrow 0} x^{2}$?
3 What is $\lim _{x \rightarrow 0} \frac{x^{3}}{x}$?
4 What is $\lim _{x \rightarrow 0} 10 x^{2}$?
5 What is $\lim _{x \rightarrow 0} 100 x^{2}$?

6 Is $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)=0$?
$\sin \left(\frac{1}{x}\right)$ does not approach any limit as $x \rightarrow 0$. The specified limit does not exist.
7 Is $\lim _{x \rightarrow 0}(.1) \sin \left(\frac{1}{x}\right)=0$?
8 Is $\lim _{x \rightarrow 0}(.01) \sin \left(\frac{1}{x}\right)=0$?
9 Is $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$?

Exercises: Evaluate the Limits

1 What is $\lim _{x \rightarrow 0} \frac{\sin x}{x}$?
2 What is $\lim _{x \rightarrow 0} x^{2}$?
3 What is $\lim _{x \rightarrow 0} \frac{x^{3}}{x}$?
4 What is $\lim _{x \rightarrow 0} 10 x^{2}$?
5 What is $\lim _{x \rightarrow 0} 100 x^{2}$?

6 Is $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)=0$?
$\sin \left(\frac{1}{x}\right)$ does not approach any limit as $x \rightarrow 0$.
The specified limit does not exist.
7 Is $\lim _{x \rightarrow 0}(.1) \sin \left(\frac{1}{x}\right)=0$?
No. It does not exist.
8 Is $\lim _{x \rightarrow 0}(.01) \sin \left(\frac{1}{x}\right)=0$?
9 Is $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$?

Exercises: Evaluate the Limits

Calculus of
Vector-valued
Functions of a Real Variable

Charles Delman

1 What is $\lim _{x \rightarrow 0} \frac{\sin x}{x}$?
2 What is $\lim _{x \rightarrow 0} x^{2}$?
3 What is $\lim _{x \rightarrow 0} \frac{x^{3}}{x}$?
4 What is $\lim _{x \rightarrow 0} 10 x^{2}$?
5 What is $\lim _{x \rightarrow 0} 100 x^{2}$?

6 Is $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)=0$?
$\sin \left(\frac{1}{x}\right)$ does not approach any limit as $x \rightarrow 0$.
The specified limit does not exist.

7 Is $\lim _{x \rightarrow 0}(.1) \sin \left(\frac{1}{x}\right)=0$?
8 Is $\lim _{x \rightarrow 0}(.01) \sin \left(\frac{1}{x}\right)=0$? No. It does not exist. No. It does not exist.

9 Is $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$?

Exercises: Evaluate the Limits

Calculus of
Vector-valued
Functions of a Real Variable

Charles Delman

1 What is $\lim _{x \rightarrow 0} \frac{\sin x}{x}$?
2 What is $\lim _{x \rightarrow 0} x^{2}$?
3 What is $\lim _{x \rightarrow 0} \frac{x^{3}}{x}$?
4 What is $\lim _{x \rightarrow 0} 10 x^{2}$?
5 What is $\lim _{x \rightarrow 0} 100 x^{2}$?

6 Is $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)=0$?
$\sin \left(\frac{1}{x}\right)$ does not approach any limit as $x \rightarrow 0$.
The specified limit does not exist.

7 Is $\lim _{x \rightarrow 0}(.1) \sin \left(\frac{1}{x}\right)=0$?
8 Is $\lim _{x \rightarrow 0}(.01) \sin \left(\frac{1}{x}\right)=0$?
No. It does not exist.
No. It does not exist.

9 Is $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$?

Exercises: Evaluate Each Limit at Infinity

Calculus of
Vector-valued Functions of a Real Variable Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals of
Vector-Valued Functions
$1 \lim _{x \rightarrow \infty} \frac{1}{x}$
$2 \lim _{x \rightarrow-\infty} \frac{1}{x}$
$3 \lim _{x \rightarrow \infty} \frac{1+x}{x}$
$4 \lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}}}{x}$
$5 \lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}}}{x}$

Exercises: Evaluate Each Limit at Infinity

Calculus of
Vector-valued Functions of a Real Variable Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals
of

Vector-Valued Functions
$1 \lim _{x \rightarrow \infty} \frac{1}{x}=0$
$2 \lim _{x \rightarrow-\infty} \frac{1}{x}=0$
$3 \lim _{x \rightarrow \infty} \frac{1+x}{x}$
4. $\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}}}{x}$
$5 \lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}}}{x}$

Exercises: Evaluate Each Limit at Infinity

Calculus of
Vector-valued Functions of a Real Variable Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals
of

Vector-Valued Functions
$1 \lim _{x \rightarrow \infty} \frac{1}{x}=0$
(2) $\lim _{x \rightarrow-\infty} \frac{1}{x}=0$
$3 \lim _{x \rightarrow \infty} \frac{1+x}{x}=1$
4. $\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}}}{x}$
$5 \lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}}}{x}$

Exercises: Evaluate Each Limit (If It Exists)

Calculus of Vector-valued Functions of a Real Variable Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals of
Vector-Valued Functions
$1 \lim _{x \rightarrow \infty} \frac{1}{x}=0$
$2 \lim _{x \rightarrow-\infty} \frac{1}{x}=0$
$3 \lim _{x \rightarrow \infty} \frac{1+x}{x}=1$
$4 \lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}}}{x}=1$
$5 \lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}}}{x}=-1$

Exercises: Evaluate Each Limit (If It Exists)

Calculus of
Vector-valued Functions of a Real Variable Charles Delman

Review of the Limit Concept
$6 \lim _{x \rightarrow \infty} \frac{\sin x}{x}$
$7 \lim _{x \rightarrow-\infty} \frac{\sin x}{x}$
$8 \lim _{x \rightarrow \infty} \sin \left(\frac{1}{x}\right)$
$9 \lim _{x \rightarrow-\infty} \sin \left(\frac{1}{x}\right)$

Exercises: Evaluate Each Limit (If It Exists)

Calculus of
Vector-valued Functions of a Real Variable Charles Delman

Review of the Limit Concept
$6 \lim _{x \rightarrow \infty} \frac{\sin x}{x}=0$
$7 \lim _{x \rightarrow-\infty} \frac{\sin x}{x}=0$
$8 \lim _{x \rightarrow \infty} \sin \left(\frac{1}{x}\right)$
$9 \lim _{x \rightarrow-\infty} \sin \left(\frac{1}{x}\right)$

Exercises: Evaluate Each Limit (If It Exists)

Calculus of
Vector-valued
Functions of a Real Variable Charles Delman

Review of the Limit Concept
$6 \lim _{x \rightarrow \infty} \frac{\sin x}{x}=0$
$7 \lim _{x \rightarrow-\infty} \frac{\sin x}{x}=0$
$8 \lim _{x \rightarrow \infty} \sin \left(\frac{1}{x}\right)=0$
$9 \lim _{x \rightarrow-\infty} \sin \left(\frac{1}{x}\right)=0$

Informal Definitions of Some Types of Limits

- The limit of a sequence, which is just a function of

Charles Delman positive whole numbers: $\lim _{n \rightarrow \infty} f(n)=L$ if (and only if) the output value $f(n)$ stays arbitrarily close to L as long as n is sufficiently large.

- Example: $\lim _{n \rightarrow \infty} \frac{n+1}{n}=1$
- The limit of a function of a real variable as its input approaches a specified value: $\lim _{x \rightarrow a} f(x)=L$ if (and only if) the output value $f(x)$ stays arbitrarily close to L as long as x is sufficiently close to a.

Exercise: Evaluate the Limit, If It Exists

Calculus of Vector-valued Functions of a Real Variable Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals
of
Vector-Valued Functions

$$
\lim _{x \rightarrow 0} \frac{\sin x}{|x|}
$$

Exercise: Evaluate the Limit, If It Exists

Calculus of
Vector-valued Functions of a Real Variable

Charles Delman

It does not exist. But we can consider the weaker notion of a limit as the input approaches from the left (below) or right (above). These do exist:

$$
\begin{gathered}
\lim _{x \rightarrow 0^{-}} \frac{\sin x}{|x|}=-1 \\
\lim _{x \rightarrow 0^{+}} \frac{\sin x}{|x|}=1
\end{gathered}
$$

Informal Definitions of Left and Right Limits

- The limit of a function of a real variable as its input

Charles Delman $\lim _{x \rightarrow a^{-}} f(x)=L$ if (and only if) the output value $f(x)$ stays arbitrarily close to L as long as x is sufficiently close to a and also less than a.

- The limit of a function of a real variable as its input approaches a specified value from the right (above): $\lim _{x \rightarrow a^{+}} f(x)=L$ if (and only if) the output value $f(x)$ stays arbitrarily close to L as long as x is sufficiently close to a and also greater than a.

Formal \& Precise Definition:
 Finite Limit at a Finite Value

Calculus of Vector-valued Functions of a Real Variable

Charles Delman

Review of the Limit Concept

- Definition. $\lim _{x \rightarrow a} f(x)=L$ if (and only if), given any positive real number ϵ, there is a positive real number δ such that

$$
0<|x-a|<\delta \Rightarrow|f(x)-L|<\epsilon
$$

■ Remark: The condition that $0<|x-a|<\delta$ means that the value of x is within δ of a, but not equal to a. The limit at a requires nothing when the value of x is equal to a, where the value of $f(x)$ may be undefined.
■ Remark: The consequence that $|f(x)-L|<\epsilon$ means that the value of $f(x)$ is within ϵ of the limiting value L. It is does not matter whether or not $f(x)$ is equal to L for some values of x satisfying the condition, hence there is no requirement that $0<|f(x)-L|$.

Illustrative Contrasting Examples

- For example, if the function f is a constant function defined by $f(x)=c, c \in \mathbb{R}$, and if a is any real number, $\lim _{x \rightarrow a} f(x)=c$ because $f(x)=c$, and hence $|f(x)-c|=|c-c|=0<\epsilon$, for every value of x.
- On the other hand, if the function g is defined by $g(x)=\frac{x^{2}}{x}$, then $\lim _{x \rightarrow 0} g(x)=0$, even though $g(x)$ is not equal to 0 for any value of x. Note that $g(x)$ is not defined for $x=0 ; 0$ is not in the domain of g.
- These examples illustrate the importance of attention to details in a precise definition.

Formal \& Precise Definition:
 Finite Limits from the Left \& Right

■ Definition. $\lim _{x \rightarrow a^{-}} f(x)=L$ if (and only if), given any positive real number ϵ, there is a positive real number δ such that

$$
a-\delta<x<a \Rightarrow|f(x)-L|<\epsilon
$$

Exercise:

■ Provide a precise, formal definition: $\lim _{x \rightarrow a^{+}} f(x)=L$ if (and only if)

Formal \& Precise Definition: Limits at Infinity

■ Just as x being sufficiently close to, but not equal to, a means that $0<|x-a|<\delta$, where δ a sufficiently small positive real number, x being sufficiently close to $+\infty$ means that $x>N$, for some sufficiently large positive real number N. (Obviously, x will never equal $+\infty$.)

- It is customary to take N to be a natural number.

■ Thus we make the definition of a finite limit at $+\infty$ formal as follows:
Definition. $\lim _{x \rightarrow+\infty} f(x)=L$ if (and only if), given any positive real number ϵ, there is a positive integer N such that

$$
x>N \Rightarrow|f(x)-L|<\epsilon
$$

Exercise: Provide a Precise \& Formal Definition

Calculus of
Vector-valued
Functions
of a Real
Variable
Charles
Delman

Review of the Limit Concept

Definition. $\lim _{x \rightarrow-\infty} f(x)=L$ if (and only if) \ldots

Theorem:
 The Limit of a Sum is the Sum of the Limits

Calculus of Vector-valued Functions of a Real Variable

Charles Delman

Theorem

If $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist and are finite, then $\lim _{x \rightarrow a} f(x)+g(x)=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$.

- Applying the Theorem:

■ Example: $\lim _{x \rightarrow 0} \frac{\sin x}{x}+x^{2}=1+0=1$.

- Example: The theorem does not apply to $\lim _{x \rightarrow 0} \frac{\sin x}{x}+\frac{1}{x}$, since $\lim _{x \rightarrow 0} \frac{1}{x}$ does not exist.
- Example: The theorem does not apply to $\lim _{x \rightarrow 0} \frac{\sin x}{x}+\frac{1}{x^{2}}$, since $\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty$ is not finite.

How to Show a Theorem is True

Variable
Charles Delman

- The consequence of the theorem need only hold for instances that satisfy the condition.
- If the condition is false, there is nothing to show!

■ Therefore, to show that the theorem is true, we assume the condition is true; under this assumption, we must logically demonstrate the truth of the consequence.

- Please note that this assumption is provisional; the condition is certainly not true in all instances!
- Please also note that we must take care to assume nothing beyond the stated condition.

Restating the Theorem Often Helps

Calculus of
Vector-valued Functions of a Real Variable

Charles Delman

Review of the Limit Concept

- Some labels make both the condition and the consequence easier to state and work with:
- Let $\lim _{x \rightarrow a} f(x)=L$.
- Let $\lim _{x \rightarrow a} g(x)=M$.

■ Substituting these labels, we have the following restatement of the theorem:

$$
\begin{aligned}
& \text { Theorem } \\
& \text { If } \lim _{x \rightarrow a} f(x)=L \text { and } \lim _{x \rightarrow a} g(x)=M \text {, then } \\
& \lim _{x \rightarrow a} f(x)+g(x)=L+M \text {. }
\end{aligned}
$$

Using Definitions to Work with the Condition

Charles Delman

- The condition that $\lim _{x \rightarrow a} f(x)=L$ means that we can make $|f(x)-L|$ as small as we like, as long as x is sufficiently close to a; sufficiently close means $0<|x-a|<\delta$, for a suitable positive real number of δ.
- Similarly, we can make $|g(x)-M|$ as small as we like.

■ Key point: for the smaller value of δ, both $|f(x)-L|$ and $|g(x)-M|$ will be as small as we like.
■ So ... how small do we need them to be?

Using Definitions to Work with the Consequence

- The consequence that $\lim _{x \rightarrow a} f(x)+g(x)=L+M$ means, given any positive real number ϵ, there is a positive real number δ such that $0<|x-a|<\delta$ is sufficient to ensure that $|f(x)+g(x)-(L+M)|<\epsilon$ (that is, $0<|x-a|<\delta \Rightarrow|f(x)+g(x)-(L+M)|<\epsilon)$.
- To show this is true, we must consider an arbitrary positive real number ϵ and show that a suitable δ exists for that ϵ.
■ We will find a suitable δ by making $|f(x)-L|$ and $|g(x)-M|$ small enough to ensure that $|f(x)+g(x)-(L+M)|<\epsilon$.

A Picture Shows Why the Theorem is True

Calculus of
Vector-valued
Functions of a Real Variable Charles Delman

■ How small must $|f(x)-L|$ and $|g(x)-M|$ be to ensure that $|f(x)+g(x)-(L+M)|<\epsilon$?

Conclusion of the Proof!

Calculus of Vector-valued Functions of a Real Variable Charles Delman

Review of the Limit Concept

■ If $|f(x)-L|<\frac{\epsilon}{2}$ and $|g(x)-M|<\frac{\epsilon}{2}$, then

$$
\begin{aligned}
& |f(x)+g(x)-(L+M)|=|f(x)-L+g(x)-M| \leq \\
& |f(x)-L|+|g(x)-M|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
\end{aligned}
$$

Theorem:

The Limit of a Product is the Product of the Limits

Calculus of Vector-valued Functions of a Real Variable

Charles Delman

Review of the Limit Concept

Extension to
Vector-valued Functions

Additional

Theorem

If $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist and are finite, then $\lim _{x \rightarrow a} f(x) g(x)=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$.

- Applying the Theorem:

$$
\text { Example: } \lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)\left(\frac{x^{2}+2 x}{x}\right)=(1)(2)=2 .
$$

■ Letting $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$, we again have a restatement in a form that is easier to prove:

Theorem

If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$, then $\lim _{x \rightarrow a} f(x) g(x)=L M$.

Using Definitions to With the Condition and the Consequence

- Again, our condition tells us that we can make $|f(x)-L|$ and $|g(x)-M|$ as small as we like, as long as $0<|x-a|<\delta$, for a suitable positive real number of δ in each case.
- Again, a simple but key observation is that a single choice of δ will work in both cases.
- Again, we must consider an arbitrary positive real number ϵ. To prove the current theorem, we must show that a suitable δ exists to ensure that $|f(x) g(x)-L M|<\epsilon$..
■ Again will find a suitable δ by making $|f(x)-L|$ and $|g(x)-M|$ small enough to ensure that $|f(x) g(x)-L M|<\epsilon$.
■ So ... how small do we need them to be?

A Picture Shows Why the Theorem is True

Calculus of
Vector-valued
Functions of a Real Variable Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

■ The picture shows that $|f(x) g(x)-L M| \leq$ $|g(x)-M||L|+|g(x)-M||f(x)-L|+|M||f(x)-L|$.

The Conclusion of the Proof!

Calculus of Vector-valued Functions of a Real Variable Charles Delman

■ Choose δ such that $0<|x-a|<\delta \Rightarrow$:

- $|g(x)-M|<\frac{\epsilon}{3 \mid L L}$, and
- $|f(x)-L|<|L|$, and
- $|f(x)-L|<\frac{\epsilon}{3|M|}$.

■ Then $|f(x) g(x)-L M|<\frac{\epsilon}{3|L|} \cdot|L|+\frac{\epsilon}{3|L|} \cdot|L|+|M| \cdot \frac{\epsilon}{3|M|}=$ $\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon$.

The Limit of a Constant Function

Calculus of
Vector-valued
Functions
of a Real
Variable
Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Theorem
If c is any real number, $\lim _{x \rightarrow a} c=c$.
This rather obvious fact follows directly from the definition of limit:

Proof.

Given any positive real number ϵ, let $\delta=1$, or anything else you like! $0<|x-a|<1 \Rightarrow|c-c|=0<\epsilon$.

All That is Needed to Define Limits is a Notion of Distance

- For real numbers x and $a, 0<|x-a|<\delta$ just says, "The distance between x and L is less than δ and greater than 0 (hence $x \neq a$)."
■ For real numbers $f(x)$ and $L,|f(x)-L|<\epsilon$ just says, "The distance between x and L is less than ϵ."
- All of the previous definitions and theorems for finite limits generalize immediately to vector-valued functions (including those with vector inputs), except that we can only multiply and divide by scalars. (In higher dimensions, you can "go to infinity" in infinitely many ways.)
- All that is required is to replace absolute value with the more general concept of the magnitude of a vector.

Exercise

- Decide which of the definitions and theorems on limits of real-valued functions extend in some form to vector-valued functions.

■ Formulate general versions of these definitions and theorems.

■ Make the necessary substitutions in the proofs of the theorems.

■ Recall the definition of continuity and extend it to vector-valued functions.

Next let's use visualization to understand how limits work in higher dimensions.

Visualizing $B_{\epsilon}(\mathbf{u})=\left\{\mathbf{v} \in \mathbb{R}^{n}:|\mathbf{v}-\mathbf{u}|<\epsilon\right\}$

Calculus of

■ $n=1: B_{\epsilon}(\mathbf{u})$ is the open interval of radius ϵ centered at \mathbf{u}.
■ $n=2$: $B_{\epsilon}(\mathbf{u})$ is the open disk of radius ϵ centered at \mathbf{u}.
■ $n=3: B_{\epsilon}(\mathbf{u})$ is the open ball of radius ϵ centered at \mathbf{u}.

$\mathrm{n}=1$

$\mathrm{n}=2$

$\mathrm{n}=3$

Visualizing
 $\left.C_{\epsilon}(\mathbf{u})=\left\{\mathbf{v} \in \mathbb{R}^{n}:\left|v_{i}-u_{i}\right|<\epsilon\right\}, i=1, \ldots, n\right\}$

Calculus of
Vector-valued Functions of a Real Variable

Charles Delman

Review of the Limit Concept

■ $n=1: C_{\epsilon}(\mathbf{u})$ is the open interval of radius ϵ centered at \mathbf{u}.
■ $n=2$: $B_{\epsilon}(\mathbf{u})$ is the open square of radius ϵ centered at \mathbf{u}, where the radius means the distance from the center to a side.

■ $n=3: B_{\epsilon}(\mathbf{u})$ is the open cube of radius ϵ centered at \mathbf{u}, where radius means the distance from the center to a face.

$B_{\epsilon}(\mathbf{u}) \subset C_{\epsilon}(\mathbf{u})$

Calculus of Vector-valued Functions of a Real Variable Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional Properties of Vector-Valued Limits

Derivatives and Integrals of Vector-Valued Functions

$$
\begin{gathered}
\sqrt{\sum_{i=1}^{n}\left(v_{i}-u_{i}\right)^{2}}<\epsilon \Rightarrow \\
\left|v_{i}-u_{i}\right|=\sqrt{\left(v_{i}-u_{i}\right)^{2}} \leq \sqrt{\sum_{i=1}^{n}\left(v_{i}-u_{i}\right)^{2}}<\epsilon \\
\mathrm{n}=1
\end{gathered}
$$

$C_{\frac{\epsilon}{\sqrt{n}}}(\mathbf{u}) \subset B_{\epsilon}(\mathbf{u})$

Calculus of Vector-valued Functions of a Real
Variable
Charles
Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional

 Properties of Vector-Valued LimitsDerivatives and Integrals of
Vector-Valued Functions

$$
\begin{gathered}
\left|v_{i}-u_{i}\right|<\frac{\epsilon}{\sqrt{n}}, i=1, \ldots, n \Rightarrow \\
\sqrt{\sum_{i=1}^{n}\left(v_{i}-u_{i}\right)^{2}}<\sqrt{\sum_{i=1}^{n}\left(\frac{\epsilon}{\sqrt{n}}\right)^{2}}=\sqrt{\sum_{i=1}^{n} \frac{\epsilon^{2}}{n}}=\sqrt{\epsilon^{2}}=\epsilon \\
\mathrm{n}=1
\end{gathered}
$$

It Follows that Limits May be Computed Coordinate by Coordinate

Calculus of
Vector-valued
Functions
of a Real
Variable
Charles Delman

Review of the Limit Concept

Extension to Vector-valued Functions

Additional

Theorem

$$
\lim _{t \rightarrow a} \mathbf{v}(t)=\left(\lim _{t \rightarrow a} v_{1}(t), \ldots, \lim _{t \rightarrow a} v_{n}(t)\right)
$$

Proof.

(Idea; details will be worked out in class.) If we can make $\mathbf{v}(t)$ arbitrarily close to a limiting vector when t is sufficiently close to (but not equal to) a, then we can make each coordinate just as close. (The ball is inside the cube.) Conversely, if we can make each coordinate $v_{i}(t)$ arbitrarily close to a limit, then we can make $\mathbf{v}(t)$ close, too. (A smaller cube, with radius shrunk by the factor $\frac{1}{\sqrt{n}}$, is inside the ball.)

Analogous results apply to sequential limits and limits at infinity.

Exercises

Calculus of Vector-valued Functions of a Real Variable Charles Delman

Review of the Limit Concept
of

1 Define what it means for a vector-valued function \mathbf{f} to be continuous at a.

2 Prove that $\lim _{t \rightarrow a} \mathbf{v} \cdot \mathbf{w}=\lim _{t \rightarrow a} \mathbf{v} \cdot \lim _{t \rightarrow a} \mathbf{w}$.
3 Prove that $\lim _{t \rightarrow a} \mathbf{v} \times \mathbf{w}=\lim _{t \rightarrow a} \mathbf{v} \times \lim _{t \rightarrow a} \mathbf{w}$.

The Definitions of the Derivative and Riemann Integral Extend in the Obvious Way

Calculus of

■ Let $\mathbf{v}=\mathbf{f}(t)$, a vector-valued function of t.

- All that is required for the following definitions is addition and scalar multiplication:

$$
\mathbf{v}^{\prime}=\mathbf{f}^{\prime}(t)=\lim _{\Delta t \rightarrow 0} \frac{\mathbf{f}(t+\Delta t)-\mathbf{f}(t)}{\Delta t}
$$

(if this limit exists, in which case \mathbf{f} is called differentiable).

$$
\int_{a}^{b} \mathbf{f}(t) d t=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \mathbf{f}\left(t_{i}^{*}\right) \Delta t
$$

(if this limit exists), where $a=t_{0}, t_{1}, t_{2}, \ldots, t_{n}=b$ is a partition of the interval $[a, b], \Delta t=\frac{b-a}{n}$, the width of each subinterval, and $t_{i}^{*} \in\left[t_{i-1}, t_{i}\right]$ (in which case \mathbf{f} is called Riemann integrable).

Exercises

Calculus of Vector-valued Functions of a Real Variable

Charles Delman

1 Prove the sum and scalar multiplication rules for differentiation of vector-valued functions.
2 Prove the sum and scalar multiplication rules for integration of vector-valued functions.

The results above show that differentiation and integration are linear operators.

3 Prove the rule for exchanging the limits of integration.
Let $\mathbf{f}(t)=\left\langle f_{1}(t), \ldots, f_{n}(t)\right\rangle$
4 Prove that $\mathbf{f}^{\prime}(t)=\left\langle f_{1}^{\prime}(t), \ldots, f_{n}^{\prime}(t)\right\rangle$.
5 Prove that $\int_{a}^{b} \mathbf{f}(t) d t=\left\langle\int_{a}^{b} \mathbf{f}_{\mathbf{1}}(t) d t, \ldots, \int_{a}^{b} \mathbf{f}_{\mathbf{n}}(t) d t\right\rangle$.
On account of the results above, the Mean Value Theorem \& Fundamental Theorem of Calculus apply to vector-valued functions.

The General Product Rule

Calculus of Vector-valued Functions of a Real Variable

Charles Delman

- To see this, first recall the proof of the product rule: Let $y=f(x), z=g(x), y+\Delta y=f(x+\Delta x)$, $z+\Delta z=g(x+\Delta x)$. Thus $\Delta(y z)=(y+\Delta y)(z+\Delta z)-y z=(\Delta y) z+y \Delta z+\Delta y \Delta z$, and we have

$$
\begin{aligned}
(y z)^{\prime}= & \lim _{\Delta x \rightarrow 0} \frac{\Delta(y z)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{(\Delta y) z+y \Delta z+\Delta y \Delta z}{\Delta x} \\
= & \lim _{\Delta x \rightarrow 0} \frac{(\Delta y)}{\Delta x} z+y \lim _{\Delta x \rightarrow 0} \frac{\Delta z}{\Delta x}+\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} \Delta z \\
& =y^{\prime} z+y z^{\prime}+\left(y^{\prime}\right)(0)=y^{\prime} z+y z^{\prime}
\end{aligned}
$$

The General Product Rule (Continued)

Calculus of Vector-valued Functions of a Real Variable

Charles Delman

- This proof depends only on the bilinearity of ordinary multiplication, which is just the distributive property: $a(b+c)=a b+a c,(a+b) c=a c+b c$.
■ This picture says it all!

■ Now you try! Prove that $(\mathbf{u} \cdot \mathbf{v})^{\prime}=\mathbf{u}^{\prime} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{v}^{\prime}$.

- Note that we don't need commutativity, so the proof will work for the cross product as well.
■ Prove that $(\mathbf{u} \times \mathbf{v})^{\prime}=\mathbf{u}^{\prime} \times \mathbf{v}+\mathbf{u} \times \mathbf{v}^{\prime}$

