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Exercises: Evaluate the Limits

1 What is limx→0
sin x
x ?

2 What is limx→0 x2?

3 What is limx→0
x3

x ?

4 What is limx→0 10x2?

5 What is limx→0 100x2?
. . .

6 Is limx→0 sin( 1
x ) = 0?

7 Is limx→0(.1) sin( 1
x ) = 0?

8 Is limx→0(.01) sin( 1
x ) = 0?

. . .

9 Is limx→0 x sin( 1
x ) = 0?
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. . .
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1 limx→∞
1
x

2 limx→−∞
1
x

3 limx→∞
1+x
x

4 limx→∞
√

x2

x

5 limx→−∞
√

x2

x
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1
x = 0
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1 limx→∞
1
x = 0
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1
x = 0

3 limx→∞
1+x
x = 1
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√
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√
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Informal Definitions of Some Types of Limits

The limit of a sequence, which is just a function of
positive whole numbers: limn→∞ f (n) = L if (and only if)
the output value f (n) stays arbitrarily close to L as long as
n is sufficiently large.

Example: lim
n→∞

n + 1

n
= 1

The limit of a function of a real variable as its input
approaches a specified value: limx→a f (x) = L if (and only
if) the output value f (x) stays arbitrarily close to L as
long as x is sufficiently close to a.
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Exercise: Evaluate the Limit, If It Exists

lim
x→0

sin x

|x |
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Exercise: Evaluate the Limit, If It Exists

1

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

-1

-10 -5 5 10

f x( ) = 
sin x( )

x

It does not exist. But we can consider the weaker notion of a
limit as the input approaches from the left (below) or right
(above). These do exist:

lim
x→0−

sin x

|x |
= −1

lim
x→0+

sin x

|x |
= 1
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Informal Definitions of Left and Right Limits

The limit of a function of a real variable as its input
approaches a specified value from the left (below):
limx→a− f (x) = L if (and only if) the output value f (x)
stays arbitrarily close to L as long as x is sufficiently close
to a and also less than a.

The limit of a function of a real variable as its input
approaches a specified value from the right (above):
limx→a+ f (x) = L if (and only if) the output value f (x)
stays arbitrarily close to L as long as x is sufficiently close
to a and also greater than a.
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Formal & Precise Definition:
Finite Limit at a Finite Value

Definition. lim
x→a

f (x) = L if (and only if), given any

positive real number ε, there is a positive real number δ
such that

0 < |x − a| < δ ⇒ |f (x)− L| < ε.

Remark: The condition that 0 < |x − a| < δ means that
the value of x is within δ of a, but not equal to a. The
limit at a requires nothing when the value of x is equal to
a, where the value of f (x) may be undefined.

Remark: The consequence that |f (x)− L| < ε means that
the value of f (x) is within ε of the limiting value L. It is
does not matter whether or not f (x) is equal to L for
some values of x satisfying the condition, hence there is
no requirement that 0 < |f (x)− L|.
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Illustrative Contrasting Examples

For example, if the function f is a constant function
defined by f (x) = c , c ∈ R, and if a is any real number,
limx→a f (x) = c because f (x) = c , and hence
|f (x)− c | = |c − c | = 0 < ε, for every value of x .

On the other hand, if the function g is defined by
g(x) = x2

x , then limx→0 g(x) = 0, even though g(x) is not
equal to 0 for any value of x . Note that g(x) is not
defined for x = 0; 0 is not in the domain of g .

These examples illustrate the importance of attention to
details in a precise definition.



Calculus of
Vector-valued

Functions
of a Real
Variable

Charles
Delman

Review of the
Limit Concept

Extension to
Vector-valued
Functions

Additional
Properties of
Vector-Valued
Limits

Derivatives
and Integrals
of
Vector-Valued
Functions

Formal & Precise Definition:
Finite Limits from the Left & Right

Definition. lim
x→a−

f (x) = L if (and only if), given any

positive real number ε, there is a positive real number δ
such that

a− δ < x < a⇒ |f (x)− L| < ε.

Exercise:

Provide a precise, formal definition: lim
x→a+

f (x) = L if (and

only if) . . ..
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Formal & Precise Definition: Limits at Infinity

Just as x being sufficiently close to, but not equal to, a
means that 0 < |x − a| < δ, where δ a sufficiently small
positive real number, x being sufficiently close to +∞
means that x > N, for some sufficiently large positive real
number N. (Obviously, x will never equal +∞.)

It is customary to take N to be a natural number.

Thus we make the definition of a finite limit at +∞ formal
as follows:
Definition. lim

x→+∞
f (x) = L if (and only if), given any

positive real number ε, there is a positive integer N such
that

x > N ⇒ |f (x)− L| < ε.
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Exercise: Provide a Precise & Formal Definition

Definition. lim
x→−∞

f (x) = L if (and only if) . . .
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Theorem:
The Limit of a Sum is the Sum of the Limits

Theorem

If limx→a f (x) and limx→a g(x) exist and are finite, then
limx→a f (x) + g(x) = limx→a f (x) + limx→a g(x).

Applying the Theorem:

Example: lim
x→0

sin x

x
+ x2 = 1 + 0 = 1.

Example: The theorem does not apply to limx→0
sin x
x + 1

x ,
since limx→0

1
x does not exist.

Example: The theorem does not apply to limx→0
sin x
x + 1

x2 ,
since limx→0

1
x2 =∞ is not finite.
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How to Show a Theorem is True

The consequence of the theorem need only hold for
instances that satisfy the condition.

If the condition is false, there is nothing to show!

Therefore, to show that the theorem is true, we assume
the condition is true; under this assumption, we must
logically demonstrate the truth of the consequence.

Please note that this assumption is provisional; the
condition is certainly not true in all instances!

Please also note that we must take care to assume nothing
beyond the stated condition.
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Restating the Theorem Often Helps

Some labels make both the condition and the consequence
easier to state and work with:

Let limx→a f (x) = L.
Let limx→a g(x) = M.

Substituting these labels, we have the following
restatement of the theorem:

Theorem

If limx→a f (x) = L and limx→a g(x) = M, then
limx→a f (x) + g(x) = L + M.
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Using Definitions to Work with the Condition

The condition that limx→a f (x) = L means that we can
make |f (x)− L| as small as we like, as long as x is
sufficiently close to a; sufficiently close means
0 < |x − a| < δ, for a suitable positive real number of δ.

Similarly, we can make |g(x)−M| as small as we like.

Key point: for the smaller value of δ, both |f (x)− L| and
|g(x)−M| will be as small as we like.

So . . . how small do we need them to be?
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Using Definitions to Work with the Consequence

The consequence that limx→a f (x) + g(x) = L + M
means, given any positive real number ε, there is a
positive real number δ such that 0 < |x − a| < δ is
sufficient to ensure that |f (x) + g(x)− (L + M)| < ε (that
is, 0 < |x − a| < δ ⇒ |f (x) + g(x)− (L + M)| < ε).

To show this is true, we must consider an arbitrary positive
real number ε and show that a suitable δ exists for that ε.

We will find a suitable δ by making |f (x)− L| and
|g(x)−M| small enough to ensure that
|f (x) + g(x)− (L + M)| < ε.
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A Picture Shows Why the Theorem is True

} }} }
f(x) g(x)

L |f(x)-L| |g(x)-M|M

} }

How small must |f (x)− L| and |g(x)−M| be to ensure
that |f (x) + g(x)− (L + M)| < ε?
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Conclusion of the Proof!

} }} }
f(x) g(x)

L < e/2 < e/2M

} }

If |f (x)− L| < ε
2 and |g(x)−M| < ε

2 , then
|f (x) + g(x)− (L + M)| = |f (x)− L + g(x)−M| ≤
|f (x)− L|+ |g(x)−M| < ε

2 + ε
2 = ε.
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Theorem:
The Limit of a Product is the Product of the Limits

Theorem

If limx→a f (x) and limx→a g(x) exist and are finite, then
limx→a f (x)g(x) = limx→a f (x) · limx→a g(x).

Applying the Theorem:

Example: lim
x→0

(
sin x

x

)(
x2 + 2x

x

)
= (1)(2) = 2.

Letting limx→a f (x) = L and limx→a g(x) = M, we again
have a restatement in a form that is easier to prove:

Theorem

If limx→a f (x) = L and limx→a g(x) = M, then
limx→a f (x)g(x) = LM.
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Using Definitions to With the Condition and the
Consequence

Again, our condition tells us that we can make |f (x)− L|
and |g(x)−M| as small as we like, as long as
0 < |x − a| < δ, for a suitable positive real number of δ in
each case.

Again, a simple but key observation is that a single choice
of δ will work in both cases.

Again, we must consider an arbitrary positive real number
ε. To prove the current theorem, we must show that a
suitable δ exists to ensure that |f (x)g(x)− LM| < ε..

Again will find a suitable δ by making |f (x)− L| and
|g(x)−M| small enough to ensure that
|f (x)g(x)− LM| < ε.

So . . . how small do we need them to be?
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A Picture Shows Why the Theorem is True

}}
} }L |f(x)-L|

M|f(x)-L|

|g(x)-M| |g(x)-M||f(x)-L||g(x)-M|L

M

}

}

f(x)

g(x)
ML

The picture shows that |f (x)g(x)− LM| ≤
|g(x)−M||L|+ |g(x)−M||f (x)− L|+ |M||f (x)− L|.
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The Conclusion of the Proof!

}}
} }L

< e/3M 
& < L

< M(e/3M)
= e/3

< e/3L
< (e/3L)L 
= e/3 < (e/3L)L = e/3

M

}

}

f(x)

g(x)
ML

Choose δ such that 0 < |x − a| < δ ⇒:

|g(x)−M| < ε
3|L| , and

|f (x)− L| < |L|, and
|f (x)− L| < ε

3|M| .

Then |f (x)g(x)− LM| < ε
3|L| · |L|+

ε
3|L| · |L|+ |M| ·

ε
3|M| =

ε
3 + ε

3 + ε
3 = ε.
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The Limit of a Constant Function

Theorem

If c is any real number, lim
x→a

c = c.

This rather obvious fact follows directly from the definition of
limit:

Proof.

Given any positive real number ε, let δ = 1, or anything else
you like! 0 < |x − a| < 1⇒ |c − c| = 0 < ε.
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All That is Needed to Define Limits
is a Notion of Distance

For real numbers x and a, 0 < |x − a| < δ just says, “The
distance between x and L is less than δ and greater than 0
(hence x 6= a).”

For real numbers f (x) and L, |f (x)− L| < ε just says,
“The distance between x and L is less than ε.”

All of the previous definitions and theorems for finite limits
generalize immediately to vector-valued functions
(including those with vector inputs), except that we can
only multiply and divide by scalars. (In higher dimensions,
you can “go to infinity” in infinitely many ways.)

All that is required is to replace absolute value with the
more general concept of the magnitude of a vector.



Calculus of
Vector-valued

Functions
of a Real
Variable

Charles
Delman

Review of the
Limit Concept

Extension to
Vector-valued
Functions

Additional
Properties of
Vector-Valued
Limits

Derivatives
and Integrals
of
Vector-Valued
Functions

Exercise

Decide which of the definitions and theorems on limits of
real-valued functions extend in some form to vector-valued
functions.

Formulate general versions of these definitions and
theorems.

Make the necessary substitutions in the proofs of the
theorems.

Recall the definition of continuity and extend it to
vector-valued functions.

Next let’s use visualization to understand how limits work in
higher dimensions.
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Visualizing Bε(u) = {v ∈ Rn : |v − u| < ε}

n = 1: Bε(u) is the open interval of radius ε centered at u.

n = 2: Bε(u) is the open disk of radius ε centered at u.

n = 3: Bε(u) is the open ball of radius ε centered at u.

{
e

e
u u

e
u

n=1 n=2 n=3
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Visualizing
Cε(u) = {v ∈ Rn : |vi − ui | < ε}, i = 1, . . . , n}

n = 1: Cε(u) is the open interval of radius ε centered at u.

n = 2: Bε(u) is the open square of radius ε centered at u,
where the radius means the distance from the center to a
side.

n = 3: Bε(u) is the open cube of radius ε centered at u,
where radius means the distance from the center to a face.
{

e
e

u u
e

u

n=1 n=2 n=3
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Bε(u) ⊂ Cε(u)

√√√√ n∑
i=1

(vi − ui )2 < ε⇒

|vi − ui | =
√

(vi − ui )2 ≤

√√√√ n∑
i=1

(vi − ui )2 < ε
{

e
e

u u
e

u

n=1 n=2 n=3
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C ε√
n
(u) ⊂ Bε(u)

|vi − ui | <
ε√
n
, i = 1, . . . , n⇒√√√√ n∑

i=1

(vi − ui )2 <

√√√√ n∑
i=1

(
ε√
n

)2 =

√√√√ n∑
i=1

ε2

n
=
√
ε2 = ε

{

e

e
u u

n=1 n=2 n=3

eu
e

2
e

3
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It Follows that Limits May be Computed
Coordinate by Coordinate

Theorem

lim
t→a

v(t) =
(

lim
t→a

v1(t), . . . , lim
t→a

vn(t)
)

Proof.

(Idea; details will be worked out in class.) If we can make v(t)
arbitrarily close to a limiting vector when t is sufficiently close
to (but not equal to) a, then we can make each coordinate just
as close. (The ball is inside the cube.) Conversely, if we can
make each coordinate vi (t) arbitrarily close to a limit, then we
can make v(t) close, too. (A smaller cube, with radius shrunk
by the factor 1√

n
, is inside the ball.)

Analogous results apply to sequential limits and limits at
infinity.
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Exercises

1 Define what it means for a vector-valued function f to be
continuous at a.

2 Prove that lim
t→a

v ·w = lim
t→a

v · lim
t→a

w.

3 Prove that lim
t→a

v ×w = lim
t→a

v × lim
t→a

w.
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The Definitions of the Derivative and Riemann
Integral Extend in the Obvious Way

Let v = f(t), a vector-valued function of t.

All that is required for the following definitions is addition
and scalar multiplication:

v′ = f ′(t) = lim
∆t→0

f(t + ∆t)− f(t)

∆t

(if this limit exists, in which case f is called differentiable).∫ b

a
f(t)dt = lim

n→∞

n∑
i=1

f(t∗i )∆t

(if this limit exists), where a = t0, t1, t2, . . . , tn = b is a
partition of the interval [a, b], ∆t = b−a

n , the width of
each subinterval, and t∗i ∈ [ti−1, ti ] (in which case f is
called Riemann integrable).
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Exercises

1 Prove the sum and scalar multiplication rules for
differentiation of vector-valued functions.

2 Prove the sum and scalar multiplication rules for
integration of vector-valued functions.

The results above show that differentiation and integration are
linear operators.

3 Prove the rule for exchanging the limits of integration.

Let f(t) = 〈f1(t), . . . , fn(t)〉
4 Prove that f ′(t) = 〈f ′1(t), . . . , f ′n(t)〉.

5 Prove that

∫ b

a
f(t)dt = 〈

∫ b

a
f1(t)dt, . . . ,

∫ b

a
fn(t)dt〉.

On account of the results above, the Mean Value Theorem &
Fundamental Theorem of Calculus apply to vector-valued
functions.
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The General Product Rule

Any bilinear product will satisfy a product rule analogous
to (fg)′ = f ′g + fg ′.

To see this, first recall the proof of the product rule:
Let y = f (x), z = g(x), y + ∆y = f (x + ∆x),
z + ∆z = g(x + ∆x). Thus
∆(yz) = (y + ∆y)(z + ∆z)−yz = (∆y)z + y∆z + ∆y∆z ,
and we have

(yz)′ = lim
∆x→0

∆(yz)

∆x
= lim

∆x→0

(∆y)z + y∆z + ∆y∆z

∆x

= lim
∆x→0

(∆y)

∆x
z + y lim

∆x→0

∆z

∆x
+ lim

∆x→0

∆y

∆x
∆z

= y ′z + yz ′ + (y ′)(0) = y ′z + yz ′
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The General Product Rule (Continued)

This proof depends only on the bilinearity of ordinary
multiplication, which is just the distributive property:
a(b + c) = ab + ac , (a + b)c = ac + bc.

This picture says it all!

}}

} }
} } }

}

f(x+Dx)

g(x+Dx)
g(x)

f(x)

z

Dz

y Dy

yz

yDz

Dy z.

Dy Dz.

Now you try! Prove that (u · v)′ = u′ · v + u · v′.
Note that we don’t need commutativity, so the proof will
work for the cross product as well.

Prove that (u× v)′ = u′ × v + u× v′
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