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Attention, Focus, & Time Management

Don’t miss class! If you must miss, get the notes from a
friend right away – and study them. Otherwise, how do
you expect to understand the next class?

Study regularly, not in marathon sessions. Prepare for
every class and take time between study sessions to
contemplate the material.

For example, a good schedule might be to study two hours
each afternoon on Monday, Tuesday, Wednesday,
Thursday, Friday, and Sunday.

Start assignments promptly and work on them regularly;
don’t leave assignments to the last minute.

If you are confused by any topic, large or small, consult me
right away. Do not hesitate to consult your professors
outside of class! (We like it! Really!)
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How to Study

You need to spend your time well. Work smart!

Go over your notes before the following class; focus on
reasoning out anything you didn’t understand.

Anticipate and read the topics in the textbook ahead of
time; look over the examples. It is o.k. if you don’t
understand everything; your reading will prepare you to
get the most out of class.

After the class on a topic, read the textbook
(thoughtfully) again.
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Reading a Mathematics Text

You don’t have to read every word; the textbook is rather
thick! It may duplicate explanations you already
understand from class or previous background. On the
first reading, you can skip the more technical details. But

Choose what parts to read; don’t just skim thoughtlessly.
Read carefully: What does every word mean? What is the
relationship between the phrases, sentences, and
paragraphs? And is not the same as or. It follows that
(therefore) is not the same as and. (We will discuss logical
relationships in a moment. They really matter!)
On your second reading, you’ll need to look at some
technical details to help you do the homework problems.
But first see what you can figure out on your own.
You’ll learn more, and enjoy your studies more, by learning
to think for yourself!
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You Must Make Logical Connections

Understanding higher mathematics requires making logical
connections between ideas.

Please take heed now!

You cannot learn calculus by memorizing procedures.
You cannot learn calculus by just getting the general idea.

The ideas are too big.
There are too many new concepts.
The problems are too hard.

You must refine your way of thinking to make it more
precise.
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An Example from Algebra: the “Old” (Sloppy) Way

x =
√

x + 2
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An Example from Algebra: the “Old” (Sloppy) Way

x =
√

x + 2

x2 = x + 2
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An Example from Algebra: the “Old” (Sloppy) Way

x =
√

x + 2

x2 = x + 2

x2 − x − 2 = 0
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An Example from Algebra: the “Old” (Sloppy) Way

x =
√

x + 2

x2 = x + 2

x2 − x − 2 = 0

(x + 1)(x − 2) = 0
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An Example from Algebra: the “Old” (Sloppy) Way

x =
√

x + 2

x2 = x + 2

x2 − x − 2 = 0

(x + 1)(x − 2) = 0

x = −1 or x = 2
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An Example from Algebra: the “Old” (Sloppy) Way

x =
√

x + 2

x2 = x + 2

x2 − x − 2 = 0

(x + 1)(x − 2) = 0

x = −1 or x = 2

But wait!

−1 6=
√
−1 + 2 =

√
1 = 1 x© 2 =

√
2 + 2 =

√
4 = 2

√

So x = 2 is the only solution.
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Clear Exposition and Precise Reasoning is the Goal

How can we explain and justify our
solution to the equation?

How do we describe each step to show what we really did?

What is the logical relationship among the steps?

Why did we get the false solution x = −1?

How do we know we have all the solutions?

A clear, precise, and fully justified solution
requires that we use logic!
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An Equation is an Open Proposition

An equation is a proposition.

A proposition is a statement that must be true or false.

An opinion is not a proposition.
(Example: “Mozart’s music is boring.” Some would say
“true”, others would say “false”.)
A question is not a proposition. It is not a statement.

An equation states that two numbers are equal. Either
they are or they are not. The equation must be either true
or false (but not both). (Example: 2 = 5. This is false.)

An equation involving variables is an open proposition.

The value of the variable is left open.
Whether the statement is true or false depends on the
value of the variable.
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Propositions Define Sets

Solving an equation means finding all values of the
variable that make the equation true.

The set of all such values is called the solution set of the
equation. Thus, the solution set of the equation
x =
√

x + 2 is the set {2}. More formally:

{x : x =
√

x + 2} = {x : x = 2} = {2}.

These symbols stand for the (true) statement,“The set of
numbers x such that x =

√
x + 2 is equal to the set of

numbers x such that x = 2, which is (of course) the set
containing exactly the element 2.” (Two sets are equal if
their elements are the same.)
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Solving an Equation Requires Logic

The terms we just discussed may be familiar.

The explicit reasoning used to solve the equation may not.

We must first translate our equation of sets,

{x : x =
√

x + 2} = {x : x = 2},

into a pair of conditional relationships:

1 If x =
√

x + 2, then x = 2.
This means that 2 is the only possible solution.

2 If x = 2, then x =
√

x + 2.
This means that 2 really is a solution.
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Logical Connectives

Logical connectives are words or phrases that convey a
relationship between the truth or falsity of propositions.

You need to know six of them:
not, and, or, if (commonly used with then), only if, implies.

The meanings of “not” and “and” should be clear from
common sense. Examples: “2 + 2 = 4” is true;
“2 + 2 6= 4” is false; “2 + 2 6= 5” is true; “2 + 2 = 4 and
2 + 3 = 5” is true; “2 + 2 = 4 and 2 + 2 = 5” is false.
(The symbol 6= means “does not equal”.)

In mathematical language, “or” is not exclusive. It is used
as in “blanket or pillow”, rather than “coffee or tea”: you
can have both. Thus, “2 + 2 = 4 or 2 + 3 = 5” is true;
“2 + 2 = 4 or 2 + 2 = 5” is also true; “2 + 2 = 5 or
2 + 2 = 6” is false.
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Logical Connectives Continued:
Conditional Statements

The connectives “if ”, “only if ”, and “implies” are used to
relate open propositions.

The following (true) propositions are synonymous:

If x = 2, then x2 = 4.
x = 2 only if x2 = 4.
x = 2 implies x2 = 4.

In the above statements, the condition x = 2 forces –
leads to – the consequence x2 = 4.

Important note: Nothing is conveyed about forcing – that
is, implication – in the other direction. In fact, the
statement “If x2 = 4, the x = 2 is false. (x could be −2.)
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Logical Connectives Continued:
Convenient Abbreviations & Symbols

The following (true) propositions are synonymous:

If x = 2, then x2 = 4.
x = 2 only if x2 = 4.
x = 2 implies x2 = 4.
x = 2⇒ x2 = 4.

The following (true) propositions are synonymous:

If x = 2, then x + 1 = 3, and if x + 1 = 3, then x = 2.
x + 1 = 3 if x = 2, and x + 1 = 3 only if x = 2.
x + 1 = 3 if and only if x = 2.
If x + 1 = 3, then x = 2, and if x = 2, then x + 1 = 3.
x = 2 if x + 1 = 3, and x = 2 only if x + 1 = 3.
x = 2 if and only if x + 1 = 3.
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Logical Connectives Continued:
One More Convenient Symbol

The following (true) propositions are synonymous:

x = 2⇒ x + 1 = 3 and x + 1 = 3⇒ x = 2.
x + 1 = 3⇒ x = 2 and x = 2⇒ x + 1 = 3.
x = 2⇔ x + 1 = 3.
x + 1 = 3⇔ x = 2.

The propositions x + 1 = 3 and x = 2 are equivalent.
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Practice: Determine Which Propositions are True

1 2 > 5 or 2 < 5.

2 2 > 5 and 2 < 5.

3 2 < 5 or 3 < 5.

4 2 < 5 and 3 < 5.

5 4 < 5 and 5 6< 5.

6 x < 5⇒ x + 1 < 5.

7 x + 1 < 5⇒ x < 5.

8 x < 5⇒ x + 1 < 6.

9 x + 1 < 6⇒ x < 5.

10 x + 1 < 6⇔ x < 5.
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Practice: Determine Which Propositions are True

1 2 > 5 or 2 < 5. True

2 2 > 5 and 2 < 5.

3 2 < 5 or 3 < 5.

4 2 < 5 and 3 < 5.

5 4 < 5 and 5 6< 5.

6 x < 5⇒ x + 1 < 5.

7 x + 1 < 5⇒ x < 5.

8 x < 5⇒ x + 1 < 6.

9 x + 1 < 6⇒ x < 5.

10 x + 1 < 6⇔ x < 5.
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Practice: Determine Which Propositions are True

1 2 > 5 or 2 < 5. True

2 2 > 5 and 2 < 5. False

3 2 < 5 or 3 < 5.

4 2 < 5 and 3 < 5.

5 4 < 5 and 5 6< 5.

6 x < 5⇒ x + 1 < 5.

7 x + 1 < 5⇒ x < 5.

8 x < 5⇒ x + 1 < 6.

9 x + 1 < 6⇒ x < 5.

10 x + 1 < 6⇔ x < 5.
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Practice: Determine Which Propositions are True

1 2 > 5 or 2 < 5. True

2 2 > 5 and 2 < 5. False

3 2 < 5 or 3 < 5. True

4 2 < 5 and 3 < 5.

5 4 < 5 and 5 6< 5.

6 x < 5⇒ x + 1 < 5.

7 x + 1 < 5⇒ x < 5.

8 x < 5⇒ x + 1 < 6.

9 x + 1 < 6⇒ x < 5.

10 x + 1 < 6⇔ x < 5.
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Practice: Determine Which Propositions are True

1 2 > 5 or 2 < 5. True

2 2 > 5 and 2 < 5. False

3 2 < 5 or 3 < 5. True

4 2 < 5 and 3 < 5. True

5 4 < 5 and 5 6< 5.

6 x < 5⇒ x + 1 < 5.

7 x + 1 < 5⇒ x < 5.

8 x < 5⇒ x + 1 < 6.

9 x + 1 < 6⇒ x < 5.

10 x + 1 < 6⇔ x < 5.
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Practice: Determine Which Propositions are True

1 2 > 5 or 2 < 5. True

2 2 > 5 and 2 < 5. False

3 2 < 5 or 3 < 5. True

4 2 < 5 and 3 < 5. True

5 4 < 5 and 5 6< 5. True

6 x < 5⇒ x + 1 < 5.

7 x + 1 < 5⇒ x < 5.

8 x < 5⇒ x + 1 < 6.

9 x + 1 < 6⇒ x < 5.

10 x + 1 < 6⇔ x < 5.
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Practice: Determine Which Propositions are True

1 2 > 5 or 2 < 5. True

2 2 > 5 and 2 < 5. False

3 2 < 5 or 3 < 5. True

4 2 < 5 and 3 < 5. True

5 4 < 5 and 5 6< 5. True

6 x < 5⇒ x + 1 < 5. False

7 x + 1 < 5⇒ x < 5.

8 x < 5⇒ x + 1 < 6.

9 x + 1 < 6⇒ x < 5.

10 x + 1 < 6⇔ x < 5.
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Practice: Determine Which Propositions are True

1 2 > 5 or 2 < 5. True

2 2 > 5 and 2 < 5. False

3 2 < 5 or 3 < 5. True

4 2 < 5 and 3 < 5. True

5 4 < 5 and 5 6< 5. True

6 x < 5⇒ x + 1 < 5. False

7 x + 1 < 5⇒ x < 5. True

8 x < 5⇒ x + 1 < 6.

9 x + 1 < 6⇒ x < 5.

10 x + 1 < 6⇔ x < 5.
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Practice: Determine Which Propositions are True

1 2 > 5 or 2 < 5. True

2 2 > 5 and 2 < 5. False

3 2 < 5 or 3 < 5. True

4 2 < 5 and 3 < 5. True

5 4 < 5 and 5 6< 5. True

6 x < 5⇒ x + 1 < 5. False

7 x + 1 < 5⇒ x < 5. True

8 x < 5⇒ x + 1 < 6. True

9 x + 1 < 6⇒ x < 5.

10 x + 1 < 6⇔ x < 5.
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Practice: Determine Which Propositions are True

1 2 > 5 or 2 < 5. True

2 2 > 5 and 2 < 5. False

3 2 < 5 or 3 < 5. True

4 2 < 5 and 3 < 5. True

5 4 < 5 and 5 6< 5. True

6 x < 5⇒ x + 1 < 5. False

7 x + 1 < 5⇒ x < 5. True

8 x < 5⇒ x + 1 < 6. True

9 x + 1 < 6⇒ x < 5. True

10 x + 1 < 6⇔ x < 5.
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Practice: Determine Which Propositions are True

1 2 > 5 or 2 < 5. True

2 2 > 5 and 2 < 5. False

3 2 < 5 or 3 < 5. True

4 2 < 5 and 3 < 5. True

5 4 < 5 and 5 6< 5. True

6 x < 5⇒ x + 1 < 5. False

7 x + 1 < 5⇒ x < 5. True

8 x < 5⇒ x + 1 < 6. True

9 x + 1 < 6⇒ x < 5. True

10 x + 1 < 6⇔ x < 5. True



Thinking
about

Mathematics

Charles
Delman

Smart Study
Habits

Background

The Language
and Logic of
Mathematics

Propositions

Logic

The Real
Number System

Relations and
Functions

Exponential
Notation

Equal Sets are Defined by Equivalent Propositions

We can now summarize our solution to the equation
logically and succinctly in symbols:

x =
√

x + 2⇔ x = 2

The propositions x =
√

x + 2 and x = 2 are equivalent.

To fully understand how we know they are equivalent, we
must understand operations in the real number system.
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What is a Real Number?

The somewhat misleading name real number has nothing
to do with the existence of these numbers; all numbers
exist as concepts, including the (equally misnamed)
imaginary numbers and the complex numbers.

Historically, the name “real” probably arose because these
numbers describe physical quantities such as length, area,
volume, and mass. Since complex numbers also play a
vital role in describing physical phenomena such as waves,
this justification really doesn’t hold up.

The real number system is the smallest system big enough
to use for calculus.

We say system because it is not just a set of numbers;
there are also operations on the numbers.



Thinking
about

Mathematics

Charles
Delman

Smart Study
Habits

Background

The Language
and Logic of
Mathematics

Propositions

Logic

The Real
Number System

Relations and
Functions

Exponential
Notation

Number operations

Two basic binary operations: addition and multiplication.

An operation associates an output to a set of inputs in
such a way that the inputs determine the output. That is,
there is one and only one output that goes with the inputs.

As a contrasting example to help explain this, the
association of a daughter to a couple is not an operation:

The couple may not have a daughter; hence, there is no
output.
The couple may have more than one daughter; hence, the
inputs (parents) do not determine a unique output.

An operation is really just a special name for a basic type
of function.
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Properties of Operations with Real Numbers

Addition and multiplication are binary operations: they
associate an output to two inputs.

Addition and multiplication are commutative operations:
the order of the inputs does not affect the output. That is:

If x , y , and z are (any) real numbers, x + y = y + x .
If x , y , and z are (any) real numbers, xy = yx .

Addition and multiplication are associative operations: the
grouping of three or more inputs into pairs does not affect
the ultimate output. That is:

If x , y , and z are real numbers, (x + y) + z = x + (y + z).
For example, (1 + 2) + 3 = 3 + 3 = 6 = 1 + 5 = 1 + (2 + 3)
If x , y , and z are real numbers, (xy)z = x(yz).

Since grouping doesn’t matter, we can leave it out, simply
writing x + y + z and xyz .



Thinking
about

Mathematics

Charles
Delman

Smart Study
Habits

Background

The Language
and Logic of
Mathematics

Propositions

Logic

The Real
Number System

Relations and
Functions

Exponential
Notation

Operations Illustrated

yx

{ x+y

x

y xy
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Properties of Operations on Real Numbers
Continued

Please note that addition and multiplication are not
associative in combination. For example,
(1 + 2) · 3 6= 1 + (2 · 3).
However, these operations do have a property in
combination: the distributive property. Multiplication
distributes over addition:
If x , y , and z are real numbers, x(y + z) = xy + xz .

y

x(y+z) = xy + xz

x

z

xy xz
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Existence of Identities and Inverses: Additive

The special number 0 is the additive identity:
Adding the quantity 0 does not change the total quantity,
thus adding 0 to any number gives the same number.
That is, if x is any real number, then x + 0 = x .

Every real number has a unique additive inverse:
When additive inverses are added, the result is 0.

Example: 5 + (−5) = 0.
0 is its own additive inverse: 0 + 0 = 0.
−(x + y) = (−x) + (−y), since
x + y + (−x) + (−y) = x + (−x) + y + (−y) = 0 + 0 = 0

Inversion is a unitary operation: it requires only one input.
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An Important Consequence

If x is any real number, then 0x = 0:

0x = (0 + 0)x , since 0 + 0 = 0.
(0 + 0)x = 0x + 0x , by the distributive property.
Thus, 0x = 0x + 0x .

Whatever 0x is, it has an additive inverse, −(0x). When
we add pairs of equal numbers, we get the same output;
hence

0 = 0x + (−(0x)) = 0x + 0x + (−(0x)) = 0x + 0 = 0x .
Thus 0x = 0
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Existence of Identities and Inverses: Multiplicative

The special number 1 is the multiplicative identity:
Multiplying any number by 1 gives the same number. In
physical terms, for example, if a room is 3 meters long and
1 meter wide, it will have a floor area of 3 square meters.

Every real number except 0 has a unique multiplicative
inverse:
When multiplicative inverses are multiplied, the result is 1.

Example: (5)
(

1
5

)
= 1.

1 is its own multiplicative inverse: (1)(1) = 1.
1
xy =

(
1
x

) (
1
y

)
, since

(xy)
(

1
x

) (
1
y

)
= x

(
1
x

)
y
(

1
y

)
= (1)(1) = 1.

Zero cannot have multiplicative inverse because, as we
have seen, if x is any real number, 0x = 0. There is no
real number x for which 0x = 1; that is impossible.
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An Important Consequence

If xy = 0, then x = 0 or y = 0:

We will show, under the given hypothesis, that if x is not
zero, then y is.
This shows that one or the other must be zero.
If x 6= 0, then it has a multiplicative inverse,

(
1
x

)
. Thus:

y = 1y =

(
1

x

)
xy =

(
1

x

)
0 = 0.

We use this fact often when solving quadratic equations!
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Defined Operations

Subtraction is defined to be addition of the additive
inverse:
If x and y are real numbers, x − y = x + (−y).

Division is defined to be multiplication by the
multiplicative inverse:

If x and y are real numbers, and y 6= 0, x
y = x

(
1
y

)
.

Since 0 has no multiplicative inverse, division by 0 is not
defined.

Many other operations and functions may be defined using
the basic ones. For example, x2 is defined by x2 = (x)(x).
Squaring is a unitary operation, since it only takes one
input, which is used for both factors.
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Using the Properties of Operations

The properties of addition and multiplication are clear
from examples and pictures.

Why do we specify them in general abstract terms?

Undoubtedly, you did not need to know the commutative,
associative, or distributed property to understand, as a
small child, that 2 + 3 = 5 or that 2 + 3 + 5 = 10.

We specify these properties in order to correctly work with
expressions involving variables (unknowns).

It is easy to calculate with specific numbers, but harder to
calculate with unknown numbers.

Variables represent numbers. The properties we have
specified tell us how numbers behave, even if we don’t
know which specific numbers the variables might represent.
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Practice: Simplify Each Expression

1
(2)(3) + 3

3

2
xy + y

y
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Practice: Simplify Each Expression

1
(2)(3) + 3

3
=

(6 + 3)

3
=

9

3
= 3

2
xy + y

y
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Practice: Simplify Each Expression

1 Using instead the multiplicative identity, distributive
property, definition of division, and associativity provides a
more illuminating method:

(2)(3) + 3

3
=

(2)(3) + (1)(3)

3
=

(2 + 1)(3)

3

=
(3)(3)

3
= (3)(3)

(
1

3

)
= (3)(1) = 3

2
xy + y

y
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Practice: Simplify Each Expression

1

(2)(3) + 3

3
=

(2 + 1)(3)

3
= (3)(3)

(
1

3

)
= 3

2 While more longwinded than needed for working with
specific numbers, this deeper understanding helps us
correctly simplify the second expression:

xy + y

y
=

(x + 1)y

y
= (x + 1)(y)

(
1

y

)
= x + 1
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Practice: Simplify Each Expression

3
2

3
+

3

5

4
x

y
+

y

z
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Practice: Simplify Each Expression

3

2

3
+

3

5
=

(
2

3

)(
5

5

)
+

(
3

5

)(
3

3

)
=

(2)(5)

(
1

3

)(
1

5

)
+ (3)(3)

(
1

5

)(
1

3

)
= (10 + 9)

(
1

15

)
=

19

15

4
x

y
+

y

z
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Practice: Simplify Each Expression

3
2

3
+

3

5
=

10

15
+

9

15
=

19

15

4
x

y
+

y

z
=

xz

yz
+

y2

yz
=

xz + y2

yz
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Practice: Simplify Each Expression

5
√

4 + 9

6

√
x2 + y2
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Practice: Simplify Each Expression

5
√

4 + 9 =
√

13

Note that
√

4 +
√

9 = 2 + 3 = 5 6=
√

13. (52 = 25.)

6

√
x2 + y2 cannot be simplified.
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Our Example from Algebra: Logical Relationships

First, let’s fill in the logical relationships among the
equations.

x =
√

x + 2⇒ (1)

x2 = x + 2⇔ (2)

x2 − x − 2 = 0⇔ (3)

(x + 1)(x − 2) = 0⇔ (4)

x = −1 or x = 2 (5)

The relationship between equation (1) and equation (2) is
the weak link; since the implication goes only one way, our
argument shows only that x =

√
x + 2⇒ x = −1 or x − 2.
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Our Example from Algebra: Justifying our Logic

Next, we will justify each logical relationship.

The implication

x =
√

x + 2⇒ (1)

x2 = x + 2 (2)

is true because the expressions on each side of equation
(1) represent the same number; therefore, we get the same
result on each side when we square that number.

We cannot assume the reverse implication is true. Recall
that

√
means the positive square root. If x is negative,√

x2 = −x . The converse implication is true for positive
values of x , but not for negative values.
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Our Example from Algebra: Justifying our Logic

The biconditional (that is, two-way) implication

x2 = x + 2⇔ (2)

x2 − x − 2 = 0 (3)

is true because if we add −x − 2 to the equal sides of
equation (2) we get the same result and, conversely, if we
add x + 2 to the equal sides of equation (3), we get the
same result.
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Our Example from Algebra: Justifying our Logic

The biconditional (that is, two-way) implication

x2 − x − 2 = 0⇔ (3)

(x + 1)(x − 2) = 0 (4)

is true because we have simply used the distributive
property to rewrite the expression on the left side of
equation (3) in a different way.

We did so in order to use our result, shown earlier, that if
the product of two real numbers is zero, then at least one
of the numbers must be zero. (The converse, that if one
of the two factors is zero, then the product is zero, is also
obviously true.)
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Our Example from Algebra: Justifying our Logic

Using the fact that the product of two numbers is zero if
and only if one of the two factors is zero, we obtain

(x + 1)(x − 2) = 0⇔ (4)

x = −1 or x = 2 (5)

We now know that −1 and 2 are the only possible
solutions, and we have explained why. Since our earlier
reasoning showed that the converse of the implication
relating equations (1) and (2) is false for negative values
of x and true for positive values, we know that −1 is not a
solution, but 2 is a solution.

Thus, we have justified that x =
√

x + 2⇔ x = 2.
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Example of a Relation

Suppose a man has 12 dollars to spend on dinner, dessert,
and tip at the local diner.

Being fair-minded, he plans to leave a 2 dollar tip, so he
has 10 dollars to spend on food.

The entrees are chicken, for 6 dollars, catfish, for 7 dollars,
and strip steak, for 9 dollars.

The desserts are pudding, for 1 dollar, pie, for 2 dollars,
and chocolate cake, for 4 dollars.

What are his possible (dinner, dessert) price combinations,
assuming that he has one of each?
Graph these combinations in (x , y) coordinates, letting x
be the price paid for dinner and y the price paid for dessert.
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What Exactly is a Relation?

The constraint on our hero’s finances clearly engenders a
relationship between the amount spent on dinner and the
amount spent on dessert: x + y ≤ 12.

It is also important to know the possible values of x (6, 7,
or 9) and y (1, 2, or 4) that may be considered.

Mathematicians use the word relation to describe this
relationship together with the possible values of the
variables. (This jargon let’s you know they are doing
mathematics and not writing a romantic advice column.)

The set of possible values of the first variable is called the
domain of the relation, and the set of possible values of
the second variable is called the range.
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Another Relation

Note that the relationship in the previous example is not
sufficiently strict that you can be sure of what he had for
dessert if you know what he had for an entree. For
example, if he had chicken, he could have had any of the
desserts.

Here is another relation in which the value of the first
coordinate does not determine the value of the second:
x2 + y2 = 1.

Graph the relation x2 + y2 = 1 in the (x , y)-coordinate
plane. (Hint: What is the distance from a point (x , y) to
the origin (0, 0).)
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The Pythagorean Theorem

The Pythagorean Theorem, which has been known since
ancient times, gives an important relationship between
length and area.

The Pythagorean Theorem states that:

For a right triangle in a flat plane
with legs of length a and b and hypotenuse of length c ,

a2 + b2 = c2.
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Why the Pythagorean Theorem is true

a
bc

a

b

c
a

bc
c

a + b 2 2 = c2

a
b
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The Converse of the Pythagorean Theorem

Since triangles are rigid - the angles of a triangle are
determined by the sides - the converse of the above
statement must also be true:

In a triangle in a flat plane with sides of length a, b, and c ,
if a2 + b2 = c2, then the angle opposite the side of length
c (the longest side) is a right angle.
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The Pythagorean Theorem and Distance

The Pythagorean Theorem allows us to calculate distances
in the coordinate plane in any direction.
The distance between the points (x1, y1) and (x2, y2) is√

(x2 − x1)2 + (y2 − y1)2.

6

4

2

-2

-4

-6

-5 5 10

distance= (x2-x1)2+(y2-y1)2
= 25+9= 34

|y2-y1|=2+1=3

|x2-x1|=6-1=5

(x2,y2)=(6,-1)

(x1,y1)=(1,2)



Thinking
about

Mathematics

Charles
Delman

Smart Study
Habits

Background

The Language
and Logic of
Mathematics

Propositions

Logic

The Real
Number System

Relations and
Functions

Exponential
Notation

The Equation of a Circle

Thus, an equation of the form (x − a)2 + (y − b)2 = r2

says, “The distance from (x , y) to the fixed point (a, b) is
r .”
Therefore, its graph is the circle with center (a, b) and
radius r .
In particular, x2 + y2 = 1 is the unit circle: the circle of
radius 1 centered at the origin (0, 0).

1.5

1

0.5

-0.5

-1

-1 1 2

x2+y2=1
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A Relation that is a Function

Suppose now the following additional fact: our hero has a
drinking problem and is trying to quit. He is determined to
spend at least 11 dollars on dinner, because then his
remaining funds will not be sufficient to buy a drink. (He
could leave a larger tip, but he doesn’t want to raise the
waiter’s expectations!)

What are his possible (dinner, dessert) price combinations
(again assuming that he has one of each)?
Graph these combinations in (x , y) coordinates, letting x
be the price paid for dinner and y the price paid for dessert.
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What Exactly is a Function?

Now the relation is sufficiently strict that his dessert is
determined by what he has for an entree.

If he has the chicken, he must get the chocolate cake, or
he will not have spent enough.
If he as the catfish, he must get the pie. The cake is too
expensive, but the pudding is too cheap.
And if he has the steak, he can only afford the pudding.

Mathematicians say that the price of his dessert is a
function of the price of his entree.

Notice that it was important to know the possible values
of x and y in order to determine the relation precisely and
recognize that it is a function. A common mistake among
students is to focus only on formulas and ignore the
domain and range of a relation.
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Functional Notation

You may recall functional notation, in which a symbol
such as f is used to represent the functional relationship,
and we write y = f (x).

It is important to understand that f is not a number, and
f (x) is not a function! f is a relationship between
numbers.

x is a number (the input).

y and f (x) represent the same number (the unique output
that corresponds to x).



Thinking
about

Mathematics

Charles
Delman

Smart Study
Habits

Background

The Language
and Logic of
Mathematics

Propositions

Logic

The Real
Number System

Relations and
Functions

Exponential
Notation

Calculus is a Method of Analyzing Functions

Many relations are described by algebraic formulas such as
x2 + y2 = 1 or f (x) =

√
x2 − x + 1.

These are called algebraic relations.

Other relations cannot be described by algebraic formulas.

These are called transcendental relations.

For example, sin θ and cos θ are not algebraic functions of
θ: there is no algebraic formula that expresses the
geometric relationships defined in trigonometry.

Calculus is a branch of the analysis of functions, both
algebraic and transcendental. Relations that are not
functions also play a role in problems whose solutions
involve calculus, but functions are central.
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Practice Simplifying Expressions Involving
Functional Notation

1 Let f (x) = x2. Compute f (−2).

2 Let f (x) = x2. Let u = 3x + 2. Compute f (u) for x = −1

3 Let f (x) = x2. Let u = 3x + 2. Compute f (u) in terms of
x .

4 Let f (x) = x2. Compute f (3x + 2).

5 Let f (x) = x2. Let ∆x be another independent variable.
(∆x is a two-letter word representing a single number.)
Let u = x + ∆x . Compute f (u) for x = −2 and ∆x = 1.

6 Let f (x) = x2 Let ∆x be another independent variable.
Let u = x + ∆x . Compute f (u) in terms of x and ∆x .

7 Let f (x) = x2. Let ∆x be another independent variable.
Compute f (x + ∆x).
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Solutions

1 f (−2) = (−2)2 = 4.

2 If x = −1, then u = 3(−1) + 2 = −1. (Note that u is a
function of x!) Hence, f (u) = u2 = (−1)2 = 1 if x = 1.
Alternatively, f (u) = f (−1) = (−1)2 = 1.

3 In general, f (u) = u2 = (3x + 2)2 = 9x2 + 12x + 4.
Alternatively, f (u) = f (3x + 2) = (3x + 2)2 = · · · .

4 f (3x + 2) = (3x + 2)2 = 9x2 + 12x + 4.

5 If x = −2 and ∆x = 1, then u = −2 + 1 = −1, hence
f (u) = u2 = (−1)2 = 1. (Or f (u) = f (−1) = (−1)2 = 1.)

6 In general, f (u) = u2 = (x + ∆x)2 = x2 + 2x∆x + ∆x2.
Aternatively, f (u) = f (x + ∆x) = (x + ∆x)2 = · · · .

7 f (x + ∆x) = (x + ∆x)2 = x2 + 2x∆x + ∆x2.
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More Practice Simplifying Expressions
Involving Functional Notation

1 Let f (x) = 1
x . Compute f (−2).

2 Let f (x) = 1
x . Let u = 3x + 2. Compute f (u) for x = −1

3 Let f (x) = 1
x . Let u = 3x + 2. Compute f (u) in terms of

x .

4 Let f (x) = 1
x . Compute f (3x + 2).

5 Let f (x) = 1
x . Let ∆x be another independent variable.

(∆x is a two-letter word representing a single number.)
Let u = x + ∆x . Compute f (u) for x = −2 and ∆x = 1.

6 Let f (x) = 1
x Let ∆x be another independent variable.

Let u = x + ∆x . Compute f (u) in terms of x and ∆x .

7 Let f (x) = 1
x . Let ∆x be another independent variable.

Compute f (x + ∆x).
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Practice Analyzing Polynomial Functions:
Sketch the Graph of Each Function

f (x) = x − 2

f (x) = 3(x − 2)

f (x) = 3(x − 2) + 1

f (x) = (x − 1)(x − 2)

f (x) = (x − 1)2

f (x) = (x − 1)2 + 1

f (x) = (x − 1)(x − 2)(x − 3)

f (x) = (x − 1)(x − 2)2

f (x) = x(x − 1)(x − 2)(x − 3)

f (x) = x(x − 1)(x − 2)2

f (x) = x(x − 2)3
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Practice Analyzing Polynomial Functions:
Find Formulas for the functions f and g

5

4

3

2

1

-1

-2

-3

-4

-5

-6

-7

-8

-9

-4 -2 2 4 6

y=f(x)

14

12

10

8

6

4

2

-2

-2 2 4

y=g(x)



Thinking
about

Mathematics

Charles
Delman

Smart Study
Habits

Background

The Language
and Logic of
Mathematics

Propositions

Logic

The Real
Number System

Relations and
Functions

Exponential
Notation

Practice Analyzing Rational Functions

If the domain and range of a function are not stated, it is
implicit that the domain consists of all possible inputs to
which the formula applies and that the range consists of
all possible outputs that result.

Find the domain and range of the function defined by
f (x) = x−3

x+7 .

Sketch the graph of f .
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Integer Exponents

Exponential expressions do not represent a new type of
number; they are just a convenient notation.

Positive integer exponents count the number of repeated
factors to provide an abbreviation: (2)(2)(2) = 23,
(x)(x)(x)(x) = x4. The repeated factor is the base.

Clearly, multiplying by the base adds 1 to the exponent,
whereas dividing by the base subtracts 1 from the
exponent: x4x = x5, x4

x = x3.

If we continue to divide, we get a natural definition for
expressions with non-positive integer exponents:
x0 = x1−1 = x

x = 1, x−1 = x0−1 = x0

x = 1
x , . . ..



Thinking
about

Mathematics

Charles
Delman

Smart Study
Habits

Background

The Language
and Logic of
Mathematics

Propositions

Logic

The Real
Number System

Relations and
Functions

Exponential
Notation

The Fundamental Properties of Exponents

Another way to look at these definitions is that exponential
notation is designed to take advantage of two fundamental
properties that facilitate simplifying expressions:

xmxn = xm+n. Example:
x2x3 = [(x)(x)][(x)(x)(x)] = x2+3 = x5

If expressions with the same base and exponent are used as
repeated factors, we can simply multiply:
(x2)3 = (x2)(x2)(x2) = x2+2+2 = x3·2 = x6.

The general definition of integer exponents extends these
properties:

x0xm = x0+m = xm; hence, x0 must be defined to equal 1,
the multiplicative identity.
x−mxm = x−m+m = x0 = 1; hence, x−m must be defined
to equal 1

xm , the multiplicative inverse of xm.
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Defining Rational Exponents
In Accordance with these Properties

Using these properties, we can further extend the notation
to define rational exponents in general:

(x
1
2 )2 = x2· 1

2 = x1 = x ; hence, x
1
2 must be defined to

equal a square root of x , which by convention we take to

be the positive square root,
√

x . (Naturally, x
1
2 is only

defined for positive values of x .)

Similarly, (x
1
3 )3 = x3· 1

3 = x1 = x ; hence, x
1
3 must be

defined to equal the cube root of x , 3
√

x .

In general, (x
1
n )n = xn· 1

n = x1 = x ; hence, x
1
n is defined to

equal the nth root of x , n
√

x , positive if n is even. (Thus,

x
1
n is only defined when this root exists; in particular, x

1
n is

not defined when n is even and x is negative.)

More generally, x
m
n = xm· 1

n = (x
1
n )m = ( n

√
x)m.
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Simplifying and Factoring Exponential Expressions

(
x−

1
3

y−
2
3

)(
x2

y
1
3

)3

= (x−
1
3 y

2
3 )(x2y−

1
3 )3 =

(x−
1
3 y

2
3 )(x6y−1) = x

17
3 y−

1
3

x2(x + 1)
2
3 − 2x(x + 1)−

1
3 = x(x + 1)−

1
3 [x(x + 1)− 2] =

x(x + 1)−
1
3 (x2 + x − 2) = x(x + 1)−

1
3 (x + 2)(x − 1) =

x(x + 2)(x − 1)

(x + 1)
1
3

.

What are all the roots of the function
f (x) = x2(x + 1)

2
3 − 2x(x + 1)−

1
3 ?
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Onward to Calculus!

Learning calculus takes discipline!

So remember those good habits:

Good sleep! Good food! Exercise!
Be sensible about drugs!
Make your education your top priority!
Don’t miss class!
Study your notes! Read the textbook!
Do all the homework . . . on time!
Work two hours outside of class for every hour in class . . .
regularly! Plan your time - don’t cram!
Think, contemplate! Find joy in learning!
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