Thinking
about
Mathematics
Charles
Delman

Smart Study Habits

Background
The Language and Logic of Mathematics Propositions Logic The Real Number System Relations and Functions Exponential Notation

Thinking about Mathematics

Charles Delman

August 18, 2013

Thinking about
Mathematics
Charles
Delman

1 Smart Study Habits

2 Background

- The Language and Logic of Mathematics
- Propositions
- Logic
- The Real Number System
- Relations and Functions
- Exponential Notation

Attention, Focus, \& Time Management

■ Don't miss class! If you must miss, get the notes from a friend right away - and study them. Otherwise, how do you expect to understand the next class?

- Study regularly, not in marathon sessions. Prepare for every class and take time between study sessions to contemplate the material.
■ For example, a good schedule might be to study two hours each afternoon on Monday, Tuesday, Wednesday, Thursday, Friday, and Sunday.
- Start assignments promptly and work on them regularly; don't leave assignments to the last minute.
- If you are confused by any topic, large or small, consult me right away. Do not hesitate to consult your professors outside of class! (We like it! Really!)

How to Study

 about Mathematics■ You need to spend your time well. Work smart!

- Go over your notes before the following class; focus on reasoning out anything you didn't understand.
- Anticipate and read the topics in the textbook ahead of time; look over the examples. It is o.k. if you don't understand everything; your reading will prepare you to get the most out of class.
- After the class on a topic, read the textbook (thoughtfully) again.

Reading a Mathematics Text

■ You don't have to read every word; the textbook is rather thick! It may duplicate explanations you already understand from class or previous background. On the first reading, you can skip the more technical details. But

- Choose what parts to read; don't just skim thoughtlessly.
- Read carefully: What does every word mean? What is the relationship between the phrases, sentences, and paragraphs? And is not the same as or. It follows that (therefore) is not the same as and. (We will discuss logical relationships in a moment. They really matter!)
- On your second reading, you'll need to look at some technical details to help you do the homework problems. But first see what you can figure out on your own.
- You'll learn more, and enjoy your studies more, by learning to think for yourself!

You Must Make Logical Connections

Understanding higher mathematics requires making logical connections between ideas.

Please take heed now!

- You cannot learn calculus by memorizing procedures. You cannot learn calculus by just getting the general idea.
- The ideas are too big.
- There are too many new concepts.
- The problems are too hard.
- You must refine your way of thinking to make it more precise.

An Example from Algebra: the "Old" (Sloppy) Way

Thinking about
Mathematics
Charles
Delman

Smart Study

 HabitsBackground
The Language and Logic of Mathematics Propositions Logic The Real Number System
Relations and
Functions
Exponential
Notation

$$
x=\sqrt{x+2}
$$

An Example from Algebra: the "Old" (Sloppy) Way

Charles
Delman

Smart Study

 Habits$$
\begin{aligned}
x & =\sqrt{x+2} \\
x^{2} & =x+2
\end{aligned}
$$

An Example from Algebra: the "Old" (Sloppy) Way

Thinking about
 Mathematics

Charles
Delman

Smart Study

Habits

Background
The Language and Logic of Mathematics Propositions
Logic
The Real Number System
Relations and Functions
Exponential Notation

$$
\begin{aligned}
x & =\sqrt{x+2} \\
x^{2} & =x+2 \\
x^{2}-x-2 & =0
\end{aligned}
$$

An Example from Algebra: the "Old" (Sloppy) Way

```
Thinking
    about
Mathematics
```

Charles
Delman

Smart Study

 HabitsBackground
The Language and Logic of Mathematics Propositions Logic The Real Number System Relations and Functions Exponential Notation

$$
\begin{aligned}
x & =\sqrt{x+2} \\
x^{2} & =x+2 \\
x^{2}-x-2 & =0 \\
(x+1)(x-2) & =0
\end{aligned}
$$

An Example from Algebra: the "Old" (Sloppy) Way

```
Thinking
    about
Mathematics
```

Charles
Delman

Smart Study Habits

Background
The Language and Logic of Mathematics Propositions
Logic
The Real
Number System
Relations and Functions
Exponential
Notation

$$
\begin{aligned}
x & =\sqrt{x+2} \\
x^{2} & =x+2 \\
x^{2}-x-2 & =0 \\
(x+1)(x-2) & =0
\end{aligned}
$$

$$
x=-1 \text { or } x=2
$$

An Example from Algebra: the "Old" (Sloppy) Way

Charles
Delman

Smart Study
Habits
Background
The Language and Logic of
Mathematics

$$
\begin{aligned}
x & =\sqrt{x+2} \\
x^{2} & =x+2 \\
x^{2}-x-2 & =0 \\
(x+1)(x-2) & =0 \\
x=-1 & \text { or } x=2
\end{aligned}
$$

But wait!

$$
-1 \neq \sqrt{-1+2}=\sqrt{1}=1 \otimes \quad 2=\sqrt{2+2}=\sqrt{4}=2
$$

So $x=2$ is the only solution.

Clear Exposition and Precise Reasoning is the Goal

How can we explain and justify our solution to the equation?

■ How do we describe each step to show what we really did?

- What is the logical relationship among the steps?
- Why did we get the false solution $x=-1$?

■ How do we know we have all the solutions?
A clear, precise, and fully justified solution requires that we use logic!

An Equation is an Open Proposition

- An equation is a proposition.
- A proposition is a statement that must be true or false.
- An opinion is not a proposition.
(Example: "Mozart's music is boring." Some would say "true", others would say "false".)
- A question is not a proposition. It is not a statement.
- An equation states that two numbers are equal. Either they are or they are not. The equation must be either true or false (but not both). (Example: $2=5$. This is false.)
- An equation involving variables is an open proposition.
- The value of the variable is left open.
- Whether the statement is true or false depends on the value of the variable.

Propositions Define Sets

- Solving an equation means finding all values of the variable that make the equation true.
- The set of all such values is called the solution set of the equation. Thus, the solution set of the equation $x=\sqrt{x+2}$ is the set $\{2\}$. More formally:

$$
\{x: x=\sqrt{x+2}\}=\{x: x=2\}=\{2\}
$$

These symbols stand for the (true) statement, "The set of numbers x such that $x=\sqrt{x+2}$ is equal to the set of numbers x such that $x=2$, which is (of course) the set containing exactly the element 2." (Two sets are equal if their elements are the same.)

Solving an Equation Requires Logic

- The terms we just discussed may be familiar.
- The explicit reasoning used to solve the equation may not.
- We must first translate our equation of sets,

$$
\{x: x=\sqrt{x+2}\}=\{x: x=2\}
$$

into a pair of conditional relationships:
1 If $x=\sqrt{x+2}$, then $x=2$.
This means that 2 is the only possible solution.
2 If $x=2$, then $x=\sqrt{x+2}$.
This means that 2 really is a solution.

Logical Connectives

- Logical connectives are words or phrases that convey a relationship between the truth or falsity of propositions.
■ You need to know six of them: not, and, or, if (commonly used with then), only if, implies.
- The meanings of "not" and "and" should be clear from common sense. Examples: " $2+2=4$ " is true; " $2+2 \neq 4$ " is false; " $2+2 \neq 5$ " is true; " $2+2=4$ and $2+3=5$ " is true; " $2+2=4$ and $2+2=5$ " is false. (The symbol \neq means "does not equal".)
■ In mathematical language, "or" is not exclusive. It is used as in "blanket or pillow", rather than "coffee or tea": you can have both. Thus, " $2+2=4$ or $2+3=5$ " is true; " $2+2=4$ or $2+2=5$ " is also true; " $2+2=5$ or $2+2=6^{\prime \prime}$ is false.

Logical Connectives Continued: Conditional Statements

■ The connectives "if", "only if", and "implies" are used to relate open propositions.

- The following (true) propositions are synonymous:
- If $x=2$, then $x^{2}=4$.
- $x=2$ only if $x^{2}=4$.
- $x=2$ implies $x^{2}=4$.
- In the above statements, the condition $x=2$ forces leads to - the consequence $x^{2}=4$.
■ Important note: Nothing is conveyed about forcing - that is, implication - in the other direction. In fact, the statement "If $x^{2}=4$, the $x=2$ is false. (x could be -2 .)

Logical Connectives Continued: Convenient Abbreviations \& Symbols

- The following (true) propositions are synonymous:
- If $x=2$, then $x^{2}=4$.
- $x=2$ only if $x^{2}=4$.
- $x=2$ implies $x^{2}=4$.
- $x=2 \Rightarrow x^{2}=4$.
- The following (true) propositions are synonymous:
- If $x=2$, then $x+1=3$, and if $x+1=3$, then $x=2$.
- $x+1=3$ if $x=2$, and $x+1=3$ only if $x=2$.
- $x+1=3$ if and only if $x=2$.
- If $x+1=3$, then $x=2$, and if $x=2$, then $x+1=3$.
- $x=2$ if $x+1=3$, and $x=2$ only if $x+1=3$.
- $x=2$ if and only if $x+1=3$.

Logical Connectives Continued: One More Convenient Symbol

Charles
Delman

- The following (true) propositions are synonymous:
- $x=2 \Rightarrow x+1=3$ and $x+1=3 \Rightarrow x=2$.
- $x+1=3 \Rightarrow x=2$ and $x=2 \Rightarrow x+1=3$.
- $x=2 \Leftrightarrow x+1=3$.
- $x+1=3 \Leftrightarrow x=2$.
- The propositions $x+1=3$ and $x=2$ are equivalent.

Practice: Determine Which Propositions are True

Charles Delman

1 $2>5$ or $2<5$.
2 $2>5$ and $2<5$.
3 $2<5$ or $3<5$.
$42<5$ and $3<5$.
$54<5$ and $5 \nless 5$.
6 $x<5 \Rightarrow x+1<5$.
$7 x+1<5 \Rightarrow x<5$.
$8 x<5 \Rightarrow x+1<6$.
(9) $x+1<6 \Rightarrow x<5$.

10 $x+1<6 \Leftrightarrow x<5$.

Practice: Determine Which Propositions are True

 MathematicsCharles Delman

1 $2>5$ or $2<5$.
2 $2>5$ and $2<5$.
(3) $2<5$ or $3<5$.
$42<5$ and $3<5$.
$54<5$ and $5 \nless 5$.
[] $x<5 \Rightarrow x+1<5$.
$7 x+1<5 \Rightarrow x<5$.
$8 x<5 \Rightarrow x+1<6$.
(9 $x+1<6 \Rightarrow x<5$.
[10 $x+1<6 \Leftrightarrow x<5$.

Practice: Determine Which Propositions are True

 MathematicsCharles Delman

1 $2>5$ or $2<5$.
2 $2>5$ and $2<5$.
(3) $2<5$ or $3<5$.
$42<5$ and $3<5$.
5 $4<5$ and $5 \nless 5$.
[] $x<5 \Rightarrow x+1<5$.
$7 x+1<5 \Rightarrow x<5$.
$8 x<5 \Rightarrow x+1<6$.
(9 $x+1<6 \Rightarrow x<5$.
$10 x+1<6 \Leftrightarrow x<5$.

False

Practice: Determine Which Propositions are True

$\begin{aligned} & \text { Thinking } \\ & \text { about } \\ & \text { Mathematics } \end{aligned}$		
Charles	(1) $2>5$ or $2<5$.	True
	2 $2>5$ and $2<5$.	False
Smart Study Habits	(3) $2<5$ or $3<5$.	True
Background The Language	$42<5$ and $3<5$.	
	$54<5$ and $5<5$.	
Proossition Logic		
	[6 $x<5 \Rightarrow x+1<5$.	
Relations and	$7 \mathrm{x}+1<5 \Rightarrow x<5$.	
cen	8 $x<5 \Rightarrow x+1<6$.	
	(9) $x+1<6 \Rightarrow x<5$.	
	10 $x+1<6 \Leftrightarrow x<5$.	

Practice: Determine Which Propositions are True

Thinking about Mathematics

Charles Delman

Smart Study
Habits
Background
The Language and Logic of Mathematics

11 $2>5$ or $2<5$.
2 $2>5$ and $2<5$.
(3) $2<5$ or $3<5$.
$42<5$ and $3<5$.
$54<5$ and $5 \nless 5$.
6 $x<5 \Rightarrow x+1<5$.
$7 x+1<5 \Rightarrow x<5$.
$8 x<5 \Rightarrow x+1<6$.
(9 $x+1<6 \Rightarrow x<5$.
[10 $x+1<6 \Leftrightarrow x<5$.

Practice: Determine Which Propositions are True

Thinking about Mathematics

Charles Delman

Smart Study
Habits
Background
The Language and Logic of Mathematics

1 $2>5$ or $2<5$.
2 $2>5$ and $2<5$.
(3) $2<5$ or $3<5$.
$42<5$ and $3<5$.
$54<5$ and $5 \nless 5$.
[] $x<5 \Rightarrow x+1<5$.
$7 x+1<5 \Rightarrow x<5$.
$8 x<5 \Rightarrow x+1<6$.
(9 $x+1<6 \Rightarrow x<5$.
[10 $x+1<6 \Leftrightarrow x<5$.

Practice: Determine Which Propositions are True

Thinking about Mathematics

Charles Delman

Smart Study
Habits
Background
The Language and Logic of Mathematics

1 $2>5$ or $2<5$.
2 $2>5$ and $2<5$.
(3) $2<5$ or $3<5$.
$42<5$ and $3<5$.
5 $4<5$ and $5 \nless 5$.
6 $x<5 \Rightarrow x+1<5$.
$7 x+1<5 \Rightarrow x<5$.
$8 x<5 \Rightarrow x+1<6$.
(9 $x+1<6 \Rightarrow x<5$.
[10 $x+1<6 \Leftrightarrow x<5$.

Practice: Determine Which Propositions are True

Thinking about
Mathematics
Charles Delman

Smart Study
Habits
Background
The Language and Logic of Mathematics

1 $2>5$ or $2<5$.
2 $2>5$ and $2<5$.
(3) $2<5$ or $3<5$.
$42<5$ and $3<5$.
5 $4<5$ and $5 \nless 5$.
[] $x<5 \Rightarrow x+1<5$.
$7 x+1<5 \Rightarrow x<5$.
$8 x<5 \Rightarrow x+1<6$.
(9 $x+1<6 \Rightarrow x<5$.
[10 $x+1<6 \Leftrightarrow x<5$.

Practice: Determine Which Propositions are True

Thinking about
Mathematics
Charles Delman

Smart Study
Habits
Background
The Language and Logic of Mathematics

1 $2>5$ or $2<5$.
2 $2>5$ and $2<5$.
(3) $2<5$ or $3<5$.
$42<5$ and $3<5$.
5 $4<5$ and $5 \nless 5$.
[] $x<5 \Rightarrow x+1<5$.
$7 x+1<5 \Rightarrow x<5$.
$8 x<5 \Rightarrow x+1<6$.
(9 $x+1<6 \Rightarrow x<5$.
$10 x+1<6 \Leftrightarrow x<5$.

Practice: Determine Which Propositions are True

Thinking about
Mathematics
Charles Delman

Smart Study
Habits
Background
The Language and Logic of Mathematics

1 $2>5$ or $2<5$.
2 $2>5$ and $2<5$.
(3) $2<5$ or $3<5$.
$42<5$ and $3<5$.
5 $4<5$ and $5 \nless 5$.
6 $x<5 \Rightarrow x+1<5$.
$7 x+1<5 \Rightarrow x<5$.
$8 x<5 \Rightarrow x+1<6$.
(9 $x+1<6 \Rightarrow x<5$.
10 $x+1<6 \Leftrightarrow x<5$.

True
False
True
True
True
False
True
True
True

Practice: Determine Which Propositions are True

Thinking about
Mathematics
Charles Delman

Smart Study
Habits
Background
The Language and Logic of Mathematics
(1) $2>5$ or $2<5$.

2 $2>5$ and $2<5$.
(3) $2<5$ or $3<5$.
$42<5$ and $3<5$.
5 $4<5$ and $5 \nless 5$.
[] $x<5 \Rightarrow x+1<5$.
$7 x+1<5 \Rightarrow x<5$.
$8 x<5 \Rightarrow x+1<6$.
$9 x+1<6 \Rightarrow x<5$.
$10 x+1<6 \Leftrightarrow x<5$.

True
False
True
True
True
False
True
True
True
True

Equal Sets are Defined by Equivalent Propositions

Thinking about Mathematics

- We can now summarize our solution to the equation logically and succinctly in symbols:

$$
x=\sqrt{x+2} \Leftrightarrow x=2
$$

- The propositions $x=\sqrt{x+2}$ and $x=2$ are equivalent.
- To fully understand how we know they are equivalent, we must understand operations in the real number system.

What is a Real Number?

- The somewhat misleading name real number has nothing to do with the existence of these numbers; all numbers exist as concepts, including the (equally misnamed) imaginary numbers and the complex numbers.
■ Historically, the name "real" probably arose because these numbers describe physical quantities such as length, area, volume, and mass. Since complex numbers also play a vital role in describing physical phenomena such as waves, this justification really doesn't hold up.
- The real number system is the smallest system big enough to use for calculus.
- We say system because it is not just a set of numbers; there are also operations on the numbers.

Number operations

- Two basic binary operations: addition and multiplication.
- An operation associates an output to a set of inputs in such a way that the inputs determine the output. That is, there is one and only one output that goes with the inputs.
- As a contrasting example to help explain this, the association of a daughter to a couple is not an operation:
- The couple may not have a daughter; hence, there is no output.
- The couple may have more than one daughter; hence, the inputs (parents) do not determine a unique output.
- An operation is really just a special name for a basic type of function.

Properties of Operations with Real Numbers

- Addition and multiplication are binary operations: they associate an output to two inputs.
- Addition and multiplication are commutative operations: the order of the inputs does not affect the output. That is:
- If x, y, and z are (any) real numbers, $x+y=y+x$.
- If x, y, and z are (any) real numbers, $x y=y x$.
- Addition and multiplication are associative operations: the grouping of three or more inputs into pairs does not affect the ultimate output. That is:
- If x, y, and z are real numbers, $(x+y)+z=x+(y+z)$.

For example, $(1+2)+3=3+3=6=1+5=1+(2+3)$

- If x, y, and z are real numbers, $(x y) z=x(y z)$.
- Since grouping doesn't matter, we can leave it out, simply writing $x+y+z$ and $x y z$.

Operations Illustrated

Thinking about Mathematics

Charles Delman

Smart Study

 HabitsBackground
The Language and Logic of Mathematics Propositions
Logic
The Real Number System Relations and Functions
Exponential Notation

Properties of Operations on Real Numbers Continued

Thinking about Mathematics

Charles Delman

- Please note that addition and multiplication are not associative in combination. For example, $(1+2) \cdot 3 \neq 1+(2 \cdot 3)$.
- However, these operations do have a property in combination: the distributive property. Multiplication distributes over addition: If x, y, and z are real numbers, $x(y+z)=x y+x z$.

$$
x(y+z)=x y+x z
$$

Existence of Identities and Inverses: Additive

- The special number 0 is the additive identity:

Adding the quantity 0 does not change the total quantity, thus adding 0 to any number gives the same number.
That is, if x is any real number, then $x+0=x$.

- Every real number has a unique additive inverse: When additive inverses are added, the result is 0 .
- Example: $5+(-5)=0$.

■ 0 is its own additive inverse: $0+0=0$.
■ $-(x+y)=(-x)+(-y)$, since $x+y+(-x)+(-y)=x+(-x)+y+(-y)=0+0=0$
■ Inversion is a unitary operation: it requires only one input.

An Important Consequence

- If x is any real number, then $0 x=0$:
- $0 x=(0+0) x$, since $0+0=0$.
- $(0+0) x=0 x+0 x$, by the distributive property.
- Thus, $0 x=0 x+0 x$.

■ Whatever $0 x$ is, it has an additive inverse, $-(0 x)$. When we add pairs of equal numbers, we get the same output; hence

- $0=0 x+(-(0 x))=0 x+0 x+(-(0 x))=0 x+0=0 x$.
- Thus $0 x=0$

Existence of Identities and Inverses: Multiplicative

Thinking about Mathematics

■ The special number 1 is the multiplicative identity: Multiplying any number by 1 gives the same number. In physical terms, for example, if a room is 3 meters long and 1 meter wide, it will have a floor area of 3 square meters.
■ Every real number except 0 has a unique multiplicative inverse:
When multiplicative inverses are multiplied, the result is 1 .

- Example: $(5)\left(\frac{1}{5}\right)=1$.
- 1 is its own multiplicative inverse: $(1)(1)=1$.
- $\frac{1}{x y}=\left(\frac{1}{x}\right)\left(\frac{1}{y}\right)$, since

$$
(x y)\left(\frac{1}{x}\right)\left(\frac{1}{y}\right)=x\left(\frac{1}{x}\right) y\left(\frac{1}{y}\right)=(1)(1)=1 .
$$

■ Zero cannot have multiplicative inverse because, as we have seen, if x is any real number, $0 x=0$. There is no real number x for which $0 x=1$; that is impossible.

An Important Consequence

Thinking

 about Mathematics■ If $x y=0$, then $x=0$ or $y=0$:

- We will show, under the given hypothesis, that if x is not zero, then y is.
- This shows that one or the other must be zero.
- If $x \neq 0$, then it has a multiplicative inverse, $\left(\frac{1}{x}\right)$. Thus:

$$
y=1 y=\left(\frac{1}{x}\right) x y=\left(\frac{1}{x}\right) 0=0
$$

- We use this fact often when solving quadratic equations!

Defined Operations

- Subtraction is defined to be addition of the additive inverse:
If x and y are real numbers, $x-y=x+(-y)$.
- Division is defined to be multiplication by the multiplicative inverse:
If x and y are real numbers, and $y \neq 0, \frac{x}{y}=x\left(\frac{1}{y}\right)$.
- Since 0 has no multiplicative inverse, division by 0 is not defined.
- Many other operations and functions may be defined using the basic ones. For example, x^{2} is defined by $x^{2}=(x)(x)$. Squaring is a unitary operation, since it only takes one input, which is used for both factors.

Using the Properties of Operations

- The properties of addition and multiplication are clear from examples and pictures.
- Why do we specify them in general abstract terms?

■ Undoubtedly, you did not need to know the commutative, associative, or distributed property to understand, as a small child, that $2+3=5$ or that $2+3+5=10$.

■ We specify these properties in order to correctly work with expressions involving variables (unknowns).

- It is easy to calculate with specific numbers, but harder to calculate with unknown numbers.
■ Variables represent numbers. The properties we have specified tell us how numbers behave, even if we don't know which specific numbers the variables might represent.

Practice: Simplify Each Expression

Thinking
about
Mathematics

Charles
Delman

Practice: Simplify Each Expression

Thinking about Mathematics
Charles Delman
Smart Study
Habits

Practice: Simplify Each Expression

1 Using instead the multiplicative identity, distributive property, definition of division, and associativity provides a more illuminating method:

$$
\begin{gathered}
\frac{(2)(3)+3}{3}=\frac{(2)(3)+(1)(3)}{3}=\frac{(2+1)(3)}{3} \\
=\frac{(3)(3)}{3}=(3)(3)\left(\frac{1}{3}\right)=(3)(1)=3
\end{gathered}
$$

$2 \frac{x y+y}{y}$

Practice: Simplify Each Expression

Thinking about Mathematics

Charles Delman

Habits
Background

1

$$
\frac{(2)(3)+3}{3}=\frac{(2+1)(3)}{3}=(3)(3)\left(\frac{1}{3}\right)=3
$$

2 While more longwinded than needed for working with specific numbers, this deeper understanding helps us correctly simplify the second expression:

$$
\frac{x y+y}{y}=\frac{(x+1) y}{y}=(x+1)(y)\left(\frac{1}{y}\right)=x+1
$$

Practice: Simplify Each Expression

Thinking
about
Mathematics
Charles
Delman

Smart Study Habits

3 $\frac{2}{3}+\frac{3}{5}$
Background
The Language and Logic of Mathematics
Propositions
Logic
The Real Number System Relations and Functions
Exponential Notation

$$
4 \frac{x}{y}+\frac{y}{z}
$$

Practice: Simplify Each Expression

Thinking about
Mathematics
Charles Delman

Smart Study Habits

Background
The Language and Logic of Mathematics
Propositions
Logic
The Real Number System Relations and Functions Exponential Notation

3

$$
\begin{gathered}
\frac{2}{3}+\frac{3}{5}=\left(\frac{2}{3}\right)\left(\frac{5}{5}\right)+\left(\frac{3}{5}\right)\left(\frac{3}{3}\right)= \\
\begin{array}{c}
(2)(5)\left(\frac{1}{3}\right)\left(\frac{1}{5}\right)+(3)(3)\left(\frac{1}{5}\right)\left(\frac{1}{3}\right) \\
=(10+9)\left(\frac{1}{15}\right)=\frac{19}{15}
\end{array}
\end{gathered}
$$

$4 \frac{x}{y}+\frac{y}{z}$

Practice: Simplify Each Expression

Thinking
about

Mathematics

Charles
Delman

Smart Study Habits

Background
The Language and Logic of Mathematics
Propositions
Logic
The Real Number System Relations and Functions
Exponential
Notation
(3) $\frac{2}{3}+\frac{3}{5}=\frac{10}{15}+\frac{9}{15}=\frac{19}{15}$
$4 \frac{x}{y}+\frac{y}{z}=\frac{x z}{y z}+\frac{y^{2}}{y z}=\frac{x z+y^{2}}{y z}$

Practice: Simplify Each Expression

Thinking
Mathematics
Charles
Delman

Smart Study Habits

Background
The Language and Logic of Mathematics Propositions
Logic
The Real Number System Relations and Functions
Exponential Notation
$5 \sqrt{4+9}$

6 $\sqrt{x^{2}+y^{2}}$

Practice: Simplify Each Expression

5 $\sqrt{4+9}=\sqrt{13}$

Note that $\sqrt{4}+\sqrt{9}=2+3=5 \neq \sqrt{13} .\left(5^{2}=25.\right)$

б $\sqrt{x^{2}+y^{2}}$ cannot be simplified.

Our Example from Algebra: Logical Relationships

- First, let's fill in the logical relationships among the equations.

$$
\begin{align*}
x & =\sqrt{x+2} \Rightarrow \tag{1}\\
x^{2} & =x+2 \Leftrightarrow \tag{2}\\
x^{2}-x-2 & =0 \Leftrightarrow \tag{3}\\
(x+1)(x-2) & =0 \Leftrightarrow \tag{4}\\
x=-1 & \text { or } x=2 \tag{5}
\end{align*}
$$

- The relationship between equation (1) and equation (2) is the weak link; since the implication goes only one way, our argument shows only that $x=\sqrt{x+2} \Rightarrow x=-1$ or $x-2$.

Our Example from Algebra: Justifying our Logic

- Next, we will justify each logical relationship.
- The implication

$$
\begin{align*}
x & =\sqrt{x+2} \Rightarrow \tag{1}\\
x^{2} & =x+2 \tag{2}
\end{align*}
$$

is true because the expressions on each side of equation (1) represent the same number; therefore, we get the same result on each side when we square that number.

- We cannot assume the reverse implication is true. Recall that $\sqrt{ }$ means the positive square root. If x is negative, $\sqrt{x^{2}}=-x$. The converse implication is true for positive values of x, but not for negative values.

Our Example from Algebra: Justifying our Logic

- The biconditional (that is, two-way) implication

$$
\begin{align*}
x^{2} & =x+2 \Leftrightarrow \tag{2}\\
x^{2}-x-2 & =0 \tag{3}
\end{align*}
$$

is true because if we add $-x-2$ to the equal sides of equation (2) we get the same result and, conversely, if we add $x+2$ to the equal sides of equation (3), we get the same result.

Our Example from Algebra: Justifying our Logic

■ The biconditional (that is, two-way) implication

$$
\begin{align*}
x^{2}-x-2 & =0 \Leftrightarrow \tag{3}\\
(x+1)(x-2) & =0 \tag{4}
\end{align*}
$$

is true because we have simply used the distributive property to rewrite the expression on the left side of equation (3) in a different way.
■ We did so in order to use our result, shown earlier, that if the product of two real numbers is zero, then at least one of the numbers must be zero. (The converse, that if one of the two factors is zero, then the product is zero, is also obviously true.)

Our Example from Algebra: Justifying our Logic

- Using the fact that the product of two numbers is zero if and only if one of the two factors is zero, we obtain

$$
\begin{gather*}
(x+1)(x-2)=0 \Leftrightarrow \tag{4}\\
x=-1 \text { or } x=2 \tag{5}
\end{gather*}
$$

■ We now know that -1 and 2 are the only possible solutions, and we have explained why. Since our earlier reasoning showed that the converse of the implication relating equations (1) and (2) is false for negative values of x and true for positive values, we know that -1 is not a solution, but 2 is a solution.

- Thus, we have justified that $x=\sqrt{x+2} \Leftrightarrow x=2$.

Example of a Relation

■ Suppose a man has 12 dollars to spend on dinner, dessert, and tip at the local diner.

- Being fair-minded, he plans to leave a 2 dollar tip, so he has 10 dollars to spend on food.
- The entrees are chicken, for 6 dollars, catfish, for 7 dollars, and strip steak, for 9 dollars.
- The desserts are pudding, for 1 dollar, pie, for 2 dollars, and chocolate cake, for 4 dollars.
- What are his possible (dinner, dessert) price combinations, assuming that he has one of each?
- Graph these combinations in (x, y) coordinates, letting x be the price paid for dinner and y the price paid for dessert.

What Exactly is a Relation?

- The constraint on our hero's finances clearly engenders a relationship between the amount spent on dinner and the amount spent on dessert: $x+y \leq 12$.
■ It is also important to know the possible values of $x(6,7$, or 9) and $y(1,2$, or 4$)$ that may be considered.
- Mathematicians use the word relation to describe this relationship together with the possible values of the variables. (This jargon let's you know they are doing mathematics and not writing a romantic advice column.)
■ The set of possible values of the first variable is called the domain of the relation, and the set of possible values of the second variable is called the range.

Another Relation

- Note that the relationship in the previous example is not sufficiently strict that you can be sure of what he had for dessert if you know what he had for an entree. For example, if he had chicken, he could have had any of the desserts.
- Here is another relation in which the value of the first coordinate does not determine the value of the second: $x^{2}+y^{2}=1$.
- Graph the relation $x^{2}+y^{2}=1$ in the (x, y)-coordinate plane. (Hint: What is the distance from a point (x, y) to the origin $(0,0)$.)

The Pythagorean Theorem

■ The Pythagorean Theorem, which has been known since ancient times, gives an important relationship between length and area.

- The Pythagorean Theorem states that:
- For a right triangle in a flat plane with legs of length a and b and hypotenuse of length c,
- $a^{2}+b^{2}=c^{2}$.

Why the Pythagorean Theorem is true

Thinking about
 Mathematics

Charles
Delman

Smart Study
Habits
Background
The Language and Logic of Mathematics Propositions Logic The Real Number System Relations and Functions Exponential Notation

$$
a^{2}+b^{2}=c^{2}
$$

The Converse of the Pythagorean Theorem

■ Since triangles are rigid - the angles of a triangle are determined by the sides - the converse of the above statement must also be true:

- In a triangle in a flat plane with sides of length a, b, and c, if $a^{2}+b^{2}=c^{2}$, then the angle opposite the side of length c (the longest side) is a right angle.

The Pythagorean Theorem and Distance

Thinking about Mathematics

Charles Delman

■ The Pythagorean Theorem allows us to calculate distances in the coordinate plane in any direction.

- The distance between the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.

The Equation of a Circle

Thinking about Mathematics

Charles Delman

- Thus, an equation of the form $(x-a)^{2}+(y-b)^{2}=r^{2}$ says, "The distance from (x, y) to the fixed point (a, b) is r."
- Therefore, its graph is the circle with center (a, b) and radius r.
- In particular, $x^{2}+y^{2}=1$ is the unit circle: the circle of radius 1 centered at the origin $(0,0)$.

A Relation that is a Function

■ Suppose now the following additional fact: our hero has a drinking problem and is trying to quit. He is determined to spend at least 11 dollars on dinner, because then his remaining funds will not be sufficient to buy a drink. (He could leave a larger tip, but he doesn't want to raise the waiter's expectations!)

- What are his possible (dinner, dessert) price combinations (again assuming that he has one of each)?
- Graph these combinations in (x, y) coordinates, letting x be the price paid for dinner and y the price paid for dessert.

What Exactly is a Function?

- Now the relation is sufficiently strict that his dessert is determined by what he has for an entree.

■ If he has the chicken, he must get the chocolate cake, or he will not have spent enough.
■ If he as the catfish, he must get the pie. The cake is too expensive, but the pudding is too cheap.

- And if he has the steak, he can only afford the pudding.
- Mathematicians say that the price of his dessert is a function of the price of his entree.
■ Notice that it was important to know the possible values of x and y in order to determine the relation precisely and recognize that it is a function. A common mistake among students is to focus only on formulas and ignore the domain and range of a relation.

Functional Notation

■ You may recall functional notation, in which a symbol such as f is used to represent the functional relationship, and we write $y=f(x)$.

- It is important to understand that f is not a number, and $f(x)$ is not a function! f is a relationship between numbers.
- x is a number (the input).
- y and $f(x)$ represent the same number (the unique output that corresponds to x).

Calculus is a Method of Analyzing Functions

■ Many relations are described by algebraic formulas such as $x^{2}+y^{2}=1$ or $f(x)=\sqrt{x^{2}-x+1}$.

- These are called algebraic relations.
- Other relations cannot be described by algebraic formulas.
- These are called transcendental relations.

■ For example, $\sin \theta$ and $\cos \theta$ are not algebraic functions of θ : there is no algebraic formula that expresses the geometric relationships defined in trigonometry.

- Calculus is a branch of the analysis of functions, both algebraic and transcendental. Relations that are not functions also play a role in problems whose solutions involve calculus, but functions are central.

Practice Simplifying Expressions Involving Functional Notation

1 Let $f(x)=x^{2}$. Compute $f(-2)$.
$\sqrt[2]{ }$ Let $f(x)=x^{2}$. Let $u=3 x+2$. Compute $f(u)$ for $x=-1$
3 Let $f(x)=x^{2}$. Let $u=3 x+2$. Compute $f(u)$ in terms of x.
4 Let $f(x)=x^{2}$. Compute $f(3 x+2)$.
5 Let $f(x)=x^{2}$. Let Δx be another independent variable. (Δx is a two-letter word representing a single number.) Let $u=x+\Delta x$. Compute $f(u)$ for $x=-2$ and $\Delta x=1$.
6 Let $f(x)=x^{2}$ Let Δx be another independent variable. Let $u=x+\Delta x$. Compute $f(u)$ in terms of x and Δx.
7 Let $f(x)=x^{2}$. Let Δx be another independent variable. Compute $f(x+\Delta x)$.

Solutions

[1 $f(-2)=(-2)^{2}=4$.
2 If $x=-1$, then $u=3(-1)+2=-1$. (Note that u is a function of x !) Hence, $f(u)=u^{2}=(-1)^{2}=1$ if $x=1$.
Alternatively, $f(u)=f(-1)=(-1)^{2}=1$.
3 In general, $f(u)=u^{2}=(3 x+2)^{2}=9 x^{2}+12 x+4$.
Alternatively, $f(u)=f(3 x+2)=(3 x+2)^{2}=\cdots$.
$4 f(3 x+2)=(3 x+2)^{2}=9 x^{2}+12 x+4$.
5 If $x=-2$ and $\Delta x=1$, then $u=-2+1=-1$, hence

$$
f(u)=u^{2}=(-1)^{2}=1 .\left(\operatorname{Or} f(u)=f(-1)=(-1)^{2}=1 .\right)
$$

б In general, $f(u)=u^{2}=(x+\Delta x)^{2}=x^{2}+2 x \Delta x+\Delta x^{2}$.
Aternatively, $f(u)=f(x+\Delta x)=(x+\Delta x)^{2}=\cdots$.
7 $f(x+\Delta x)=(x+\Delta x)^{2}=x^{2}+2 x \Delta x+\Delta x^{2}$.

More Practice Simplifying Expressions Involving Functional Notation

1 Let $f(x)=\frac{1}{x}$. Compute $f(-2)$.
2 Let $f(x)=\frac{1}{x}$. Let $u=3 x+2$. Compute $f(u)$ for $x=-1$
3 Let $f(x)=\frac{1}{x}$. Let $u=3 x+2$. Compute $f(u)$ in terms of x.
4 Let $f(x)=\frac{1}{x}$. Compute $f(3 x+2)$.
5 Let $f(x)=\frac{1}{x}$. Let Δx be another independent variable. (Δx is a two-letter word representing a single number.) Let $u=x+\Delta x$. Compute $f(u)$ for $x=-2$ and $\Delta x=1$.
6 Let $f(x)=\frac{1}{x}$ Let Δx be another independent variable. Let $u=x+\Delta x$. Compute $f(u)$ in terms of x and Δx.
7 Let $f(x)=\frac{1}{x}$. Let Δx be another independent variable. Compute $f(x+\Delta x)$.

Practice Analyzing Polynomial Functions:
 Sketch the Graph of Each Function

Thinking about Mathematics

Charles Delman

Smart Study Habits

Background
The Language and Logic of
Mathematics Propositions
Logic
Number System
Relations and Functions Exponential Notation

- $f(x)=x-2$
- $f(x)=3(x-2)$
- $f(x)=3(x-2)+1$
- $f(x)=(x-1)(x-2)$
- $f(x)=(x-1)^{2}$
- $f(x)=(x-1)^{2}+1$
- $f(x)=(x-1)(x-2)(x-3)$
- $f(x)=(x-1)(x-2)^{2}$
- $f(x)=x(x-1)(x-2)(x-3)$
- $f(x)=x(x-1)(x-2)^{2}$
- $f(x)=x(x-2)^{3}$

Practice Analyzing Polynomial Functions:
 Find Formulas for the functions f and g

Thinking about
Mathematics
Charles Delman

Smart Study Habits

Background
The Language and Logic of Mathematics Propositions Logic The Real Number System Relations and Functions Exponential Notation

Practice Analyzing Rational Functions

- If the domain and range of a function are not stated, it is implicit that the domain consists of all possible inputs to which the formula applies and that the range consists of all possible outputs that result.
- Find the domain and range of the function defined by $f(x)=\frac{x-3}{x+7}$.
- Sketch the graph of f.

Integer Exponents

■ Exponential expressions do not represent a new type of number; they are just a convenient notation.

- Positive integer exponents count the number of repeated factors to provide an abbreviation: $(2)(2)(2)=2^{3}$, $(x)(x)(x)(x)=x^{4}$. The repeated factor is the base.
■ Clearly, multiplying by the base adds 1 to the exponent, whereas dividing by the base subtracts 1 from the exponent: $x^{4} x=x^{5}, \frac{x^{4}}{x}=x^{3}$.
- If we continue to divide, we get a natural definition for expressions with non-positive integer exponents: $x^{0}=x^{1-1}=\frac{x}{x}=1, x^{-1}=x^{0-1}=\frac{x^{0}}{x}=\frac{1}{x}, \ldots$.

The Fundamental Properties of Exponents

- Another way to look at these definitions is that exponential notation is designed to take advantage of two fundamental properties that facilitate simplifying expressions:

■ $x^{m} x^{n}=x^{m+n}$. Example:

$$
x^{2} x^{3}=[(x)(x)][(x)(x)(x)]=x^{2+3}=x^{5}
$$

■ If expressions with the same base and exponent are used as repeated factors, we can simply multiply:

$$
\left(x^{2}\right)^{3}=\left(x^{2}\right)\left(x^{2}\right)\left(x^{2}\right)=x^{2+2+2}=x^{3 \cdot 2}=x^{6}
$$

- The general definition of integer exponents extends these properties:

■ $x^{0} x^{m}=x^{0+m}=x^{m}$; hence, x^{0} must be defined to equal 1 , the multiplicative identity.
■ $x^{-m} x^{m}=x^{-m+m}=x^{0}=1$; hence, x^{-m} must be defined to equal $\frac{1}{x^{m}}$, the multiplicative inverse of x^{m}.

Defining Rational Exponents
 In Accordance with these Properties

- Using these properties, we can further extend the notation to define rational exponents in general:
- $\left(x^{\frac{1}{2}}\right)^{2}=x^{2 \cdot \frac{1}{2}}=x^{1}=x$; hence, $x^{\frac{1}{2}}$ must be defined to equal a square root of x, which by convention we take to be the positive square root, \sqrt{x}. (Naturally, $x^{\frac{1}{2}}$ is only defined for positive values of x.)
- Similarly, $\left(x^{\frac{1}{3}}\right)^{3}=x^{3 \cdot \frac{1}{3}}=x^{1}=x$; hence, $x^{\frac{1}{3}}$ must be defined to equal the cube root of $x, \sqrt[3]{x}$.
- In general, $\left(x^{\frac{1}{n}}\right)^{n}=x^{n \cdot \frac{1}{n}}=x^{1}=x$; hence, $x^{\frac{1}{n}}$ is defined to equal the $n^{\text {th }}$ root of $x, \sqrt[n]{x}$, positive if n is even. (Thus, $x^{\frac{1}{n}}$ is only defined when this root exists; in particular, $x^{\frac{1}{n}}$ is not defined when n is even and x is negative.)
- More generally, $x^{\frac{m}{n}}=x^{m \cdot \frac{1}{n}}=\left(x^{\frac{1}{n}}\right)^{m}=(\sqrt[n]{x})^{m}$.

Simplifying and Factoring Exponential Expressions

Thinking

 about MathematicsCharles Delman

$$
\begin{aligned}
& \left(\frac{x^{-\frac{1}{3}}}{y^{-\frac{2}{3}}}\right)\left(\frac{x^{2}}{y^{\frac{1}{3}}}\right)^{3}=\left(x^{-\frac{1}{3}} y^{\frac{2}{3}}\right)\left(x^{2} y^{-\frac{1}{3}}\right)^{3}= \\
& \left(x^{-\frac{1}{3}} y^{\frac{2}{3}}\right)\left(x^{6} y^{-1}\right)=x^{\frac{17}{3}} y^{-\frac{1}{3}} \\
& x^{2}(x+1)^{\frac{2}{3}}-2 x(x+1)^{-\frac{1}{3}}=x(x+1)^{-\frac{1}{3}}[x(x+1)-2]= \\
& x(x+1)^{-\frac{1}{3}}\left(x^{2}+x-2\right)=x(x+1)^{-\frac{1}{3}}(x+2)(x-1)= \\
& \frac{x(x+2)(x-1)}{(x+1)^{\frac{1}{3}}}
\end{aligned}
$$

- What are all the roots of the function $f(x)=x^{2}(x+1)^{\frac{2}{3}}-2 x(x+1)^{-\frac{1}{3}}$?

Onward to Calculus!

- Learning calculus takes discipline!
- So remember those good habits:
- Good sleep! Good food! Exercise!
- Be sensible about drugs!
- Make your education your top priority!
- Don't miss class!
- Study your notes! Read the textbook!
- Do all the homework ... on time!
- Work two hours outside of class for every hour in class ... regularly! Plan your time - don't cram!
- Think, contemplate! Find joy in learning!

