MAT 1400: End-of-term Exam April 24, 2019

Name: _______ No calculators, books, or notes may be used for this exam.

- 1. Let $f(x) = \sqrt{x-2}$, and let $g(x) = 2x^3$.
 - (a) What is the domain of f?
 - (b) What is the domain of g?
 - (c) Write the formula for $f \circ g(x)$.
 - (d) What is the domain of $f \circ g$?
 - (e) What is the domain of $\frac{g}{f}$?
- 2. Let $h : \mathbb{R} \to \mathbb{R}$ be the function defined by $h(x) = (x+2)^2$.
 - (a) Provide formulas for functions f and g such that $h = f \circ g$.
 - g(x) =
 - f(x) =
 - (b) Sketch the graph of y = h(x) on the coordinate system below. Your graph should clearly show the x- and y intercepts.

- (c) On what intervals is this function increasing?
- (d) On what intervals is this function decreasing?
- (e) Does this function have a maximum or minimum value? If so, what is it? Maximum: Yes No Circle one. If yes, maximum value occurs at x = ____, and the maximum value is y = ____. Minimum: Yes No Circle one. If yes, minimum value occurs at x = ____, and the minimum value is y = ____.

3. A farmer has 60 meters of fence she wants to use to enclose a field that is next to a straight canal. The canal will form one side of the field; fencing is only required on the other three sides. Find the dimensions of the field of largest area that can be enclosed in this way. *Be sure to show your solution process and reasoning!*

		Canal		

4. (a) On the grid below, graph the function $y = f(x) = 2\sqrt{x-1} - 4$. Accurately show the *x*-intercept on your graph. (Note that f(5) = 0.)

		I						
			1					
				1				

(b) On the grid below, graph the function y = (x - 1)(x + 1)(x - 2), accurately showing the xand y-intercepts.

5. (a) Use long division of polynomials to write the rational function

$$\frac{x^4 + 2x^3 - 3x + 5}{x^2 - x + 1}$$

as the sum of a polynomial and a proper rational function (that is, one in which the degree of the numerator is less than the degree of the denominator).

$$\frac{x^4 + 2x^3 - 3x + 5}{x^2 - x + 1} =$$

- (b) Simplify to a + bi form: $\overline{2 3i}$
- (c) Simplify to a + bi form: (2 3i)(2 + 3i)
- (d) Simplify to a + bi form: $\frac{2 3i}{2 + 3i}$