MAT 1400: End-of-term Exam
April 24, 2019

Name:
No calculators, books, or notes may be used for this exam.

1. Let $f(x)=\sqrt{x-2}$, and let $g(x)=2 x^{3}$.
(a) What is the domain of f ?
(b) What is the domain of g ? \qquad
(c) Write the formula for $f \circ g(x)$.
(d) What is the domain of $f \circ g$?
(e) What is the domain of $\frac{g}{f}$?
2. Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $h(x)=(x+2)^{2}$.
(a) Provide formulas for functions f and g such that $h=f \circ g$.
$g(x)=$
$f(x)=$
(b) Sketch the graph of $y=h(x)$ on the coordinate system below. Your graph should clearly show the x - and y intercepts.

(c) On what intervals is this function increasing?
(d) On what intervals is this function decreasing?
(e) Does this function have a maximum or minimum value? If so, what is it?

Maximum: Yes No Circle one.
If yes, maximum value occurs at $x=$ \qquad , and the maximum value is $y=$ \qquad .
Minimum: Yes
No Circle one.
If yes, minimum value occurs at $x=$ \qquad , and the minimum value is $y=$ \qquad .
3. A farmer has 60 meters of fence she wants to use to enclose a field that is next to a straight canal. The canal will form one side of the field; fencing is only required on the other three sides. Find the dimensions of the field of largest area that can be enclosed in this way. Be sure to show your solution process and reasoning!

4. (a) On the grid below, graph the function $y=f(x)=2 \sqrt{x-1}-4$. Accurately show the x-intercept on your graph. (Note that $f(5)=0$.)

(b) On the grid below, graph the function $y=(x-1)(x+1)(x-2)$, accurately showing the x and y-intercepts.

5. (a) Use long division of polynomials to write the rational function

$$
\frac{x^{4}+2 x^{3}-3 x+5}{x^{2}-x+1}
$$

as the sum of a polynomial and a proper rational function (that is, one in which the degree of the numerator is less than the degree of the denominator).

$$
\frac{x^{4}+2 x^{3}-3 x+5}{x^{2}-x+1}=
$$

(b) Simplify to $a+b i$ form: $\overline{2-3 i}$
(c) Simplify to $a+b i$ form: $(2-3 i)(2+3 i)$
(d) Simplify to $a+b i$ form: $\frac{2-3 i}{2+3 i}$

