CHM5070 Su2008
Assignment \#2
Due in class Tuesday, June 16

1. For a mixture prepared by mixing 5.00 g of caffeine $\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}\right)$ with 250.0 mL of water. The final density of this mixture is $1.05 \mathrm{~g} / \mathrm{mL}$.
a. Calculate the boiling point of this mixture
b. Calculate the freezing point of this mixture
c. Calculate the osmotic pressure of this mixture at $25^{\circ} \mathrm{C}$.
2. Add 5.00 g NaCl to $500 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$. What is the freezing point? What is the boiling point? Assume that all of the NaCl dissociates in solution.
3. Note: Omit this problem.There is not enough information given to find a solution for part a or b.

A solution is 6.00% by mass of a solute and the rest is water.
a. Calculate the molar mass of the solute. Assume it is not an ionic compound.
b. The density of the solution is $1.023 \mathrm{~g} / \mathrm{mL}$. Calculate the osmotic pressure of the solution.
4. The reaction

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

a) For the reactant and each of the products write expressions for the rate of reaction.
b) If oxygen is produced at a rate of $4.8 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ at what rate is $\mathrm{N}_{2} \mathrm{O}_{5}$
disappearing and at what rate is NO_{2} forming?
5. The rate of the reaction

$$
2 \mathrm{HgCl}_{2}(\mathrm{~s})+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}(\mathrm{aq}) \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})+2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~s})
$$

is followed by measuring the initial rate at different concentrations of the reactants.

Expt	$\left[\mathbf{H g C l}_{2}\right], \mathbf{M}$	$\left[\mathbf{C}_{2} \mathbf{O}_{4}{ }^{2}\right], \mathbf{M}$	Initial rate, $\mathbf{m o l} /(\mathbf{L} \mathbf{~ m i n})$
1	0.105	0.15	1.8×10^{-5}
2	0.105	0.30	7.1×10^{-5}
3	0.052	0.30	3.5×10^{-5}
4	0.052	0.15	8.9×10^{-6}

a) Determine the order of the reaction with respect to HgCl_{2}. with respect to $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$, and overall.
b) Write the rate law for this reaction.
c) What is the value of the rate constant k ?
d) What would be the initial rate of reaction if $\left[\mathrm{HgCl}_{2}\right]=0.020 \mathrm{M}$ and $\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]=0.22 \mathrm{M}$?
6. The following reaction is first order with a rate constant of $6.2 \times 10^{-4} \mathrm{~s}^{-1}$ at $45^{\circ} \mathrm{C}$.

$$
\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}+1 / 2 \mathrm{O}_{2}
$$

If an initial amount of 80.0 g of $\mathrm{N}_{2} \mathrm{O}_{5}$ is allowed to decompose at $45^{\circ} \mathrm{C} \ldots \ldots$.
a. How long will it take for the quantity of $\mathrm{N}_{2} \mathrm{O}_{5}$ to be reduced to 2.5 g .?
b. What volume of O_{2} at 1 atm and $45^{\circ} \mathrm{C}$ will be produced at this point?
7. Textbook Chapter 13 Problem 54

