PHY 1150
Doug Davis
Chapter 16; Waves and Sound

$$
16.2,12,14 a, 14 b, 16,17,21,22,28,32,49,54
$$

$16.2 \mathrm{v}=\mathrm{f} \lambda$
$\lambda=\mathbf{v} / \mathbf{f}$
$\lambda=\frac{340 \mathrm{~m} / \mathrm{s}}{\mathbf{5 0 (1 / \mathrm { s })}}=6.8 \mathrm{~m}$
$\lambda=\frac{340 \mathrm{~m} / \mathrm{s}}{20000(1 / \mathrm{s})}=0.017 \mathrm{~m}=1.7 \mathrm{~cm}$
16.12

$$
\begin{aligned}
& \text { linear mass density }=\frac{\text { mass }}{\text { length }}=\frac{\mathrm{m}}{\mathrm{~L}}=\frac{5.4 \mathrm{~kg}}{9.0 \mathrm{~m}}=0.6 \frac{\mathrm{~kg}}{\mathrm{~m}} \\
& \mathrm{v}=\frac{2 \times 9.0 \mathrm{~m}}{0.6 \mathrm{~s}}=30 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \mathrm{v}=\sqrt{\frac{T}{\mathrm{~m} / \mathrm{L}}} \\
& \mathrm{v}^{2}=\frac{\mathrm{T}}{\mathrm{~m} / \mathrm{L}} \\
& T=\mathrm{v}^{2}(\mathrm{~m} / \mathrm{L})=(30 \mathrm{~m} / \mathrm{s})^{2}(0.6 \mathrm{~kg} / \mathrm{m}) \\
& T=540 \mathrm{~N}
\end{aligned}
$$

16.14 b

$16.16 \mathrm{f}_{1}=\mathbf{4 4 0 ~ H z}$
$\mathbf{f}_{\mathbf{n}}=\mathbf{n} \mathbf{f}_{\mathbf{1}}$
$f_{2}=880 \mathrm{~Hz}$
$\mathrm{f}_{3}=1760 \mathrm{~Hz}$
$\mathrm{f}_{4}=3520 \mathrm{~Hz}$
$\mathrm{f}_{5}=7040 \mathrm{~Hz}$
$\mathrm{f}_{6}=14080 \mathrm{~Hz}$
$f 7=28160 \mathrm{~Hz}$ will be ultrasonic, and cannot be heard
16.17 The velocity of the wave on the string is given by

$$
\begin{aligned}
& v=f \lambda \\
& \lambda / 2=0.70 \mathrm{~m} \\
& \lambda=1.4 \mathrm{~m} \\
& v=(440 \mathrm{~Hz})(1.4 \mathrm{~m}) \\
& v=616 \mathrm{~m} / \mathrm{s} \\
& \lambda=\frac{v}{f}=\frac{616 \mathrm{~m} / \mathrm{s}}{524(1 / \mathrm{s})}=1.176 \mathrm{~m} \\
& \lambda / 2=0.588 \mathrm{~m}
\end{aligned}
$$

That is, your finger should be placed so the string that vibrates is 0.588 m (or 0.59 m) long.

$$
\begin{aligned}
& 16.21 \lambda / 2=2.8 \mathrm{~m} / 5=0.56 \mathrm{~m} \\
& \lambda=1.12 \mathrm{~m} \\
& f=60 \mathrm{~Hz}=60(1 / \mathrm{s}) \\
& v=\mathrm{f} \lambda=(60 / \mathrm{s})(1.12 \mathrm{~m})=67.2 \mathrm{~m} / \mathrm{s} \\
& v=\sqrt{\frac{T}{\mathrm{~m} / \mathrm{L}}}
\end{aligned}
$$

$$
\begin{aligned}
& v^{2}=\frac{T}{m / L} \\
& T=v^{2}(\mathrm{~m} / \mathrm{L}) \\
& \frac{\mathrm{m}}{\mathrm{~L}}=\frac{0.045 \mathrm{~kg}}{2.4 \mathrm{~m}}=0.1875 \frac{\mathrm{~kg}}{\mathrm{~m}} \\
& \mathrm{~T}=\mathrm{v}^{2}(\mathrm{~m} / \mathrm{L})=(67.2 \mathrm{~m} / \mathrm{s})^{2}(0.01875 \mathrm{~kg} / \mathrm{m})=84.67 \mathrm{~N} \\
& \mathrm{~T}=\mathrm{m} \mathrm{~g} \\
& \mathrm{~m}=\frac{\mathrm{T}}{\mathrm{~g}}=84.67 \mathrm{~N} \\
& \mathrm{~m}=8.8 \mathrm{~m} / \mathrm{s}^{2} \\
& \mathrm{~m}=8.64 \mathrm{~kg}
\end{aligned}
$$

$16.22 \frac{\lambda_{1}}{4}=1.0 \mathrm{~m}$

$$
\lambda_{1}=4.0 \mathrm{~m}
$$

$$
\mathbf{v}=\mathbf{f} \lambda
$$

$$
\mathbf{f}=\frac{\mathbf{v}}{\lambda}
$$

$$
f_{1}=\frac{v}{\lambda_{1}}=\frac{340 \mathrm{~m} / \mathrm{s}}{4.0 \mathrm{~m}}=85 \mathrm{~Hz}
$$

The next overtone is such an open pipe-exactly like the resonance tubes we used in the lab-has (3/4) of a wavelength.
$(3 / 4) \lambda_{2}=1.0 \mathrm{~m}$
$\lambda_{2}=1.33 \mathrm{~m}$
$f_{2}=\frac{v}{\lambda_{2}}=\frac{340 \mathrm{~m} / \mathrm{s}}{1.33 \mathrm{~m}}=256 \mathrm{~Hz}$
16.28 This one should be (very) familar!

$$
\begin{aligned}
& (1 / 2) \lambda=0.600 \mathrm{~m}-0.360 \mathrm{~m}=0.360 \mathrm{~m}-0.120 \mathrm{~m}=0.240 \mathrm{~m} \\
& \lambda=0.480 \mathrm{~m} \\
& \mathbf{v}=\mathbf{f} \lambda \\
& \mathbf{f}=\frac{\mathbf{v}}{\lambda}=\frac{345 \mathrm{~m} / \mathrm{s}}{0.480 \mathrm{~m}}=\mathbf{7 1 9 \mathrm { Hz }}
\end{aligned}
$$

$$
\begin{aligned}
16.32 v & =[331+(0.60)(42)] \mathrm{m} / \mathrm{s} \\
v & =[331+25] \mathrm{m} / \mathrm{s} \\
v & =356 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$16.49 \mathbf{f}^{\prime}=f\left(\frac{\mathbf{V}+\mathbf{V}_{\text {obs }}}{\mathbf{v}+\mathbf{v}_{\mathbf{s}}}\right)$

$$
\begin{aligned}
& f^{\prime}=500 \mathrm{~Hz}\left(\frac{340 \mathrm{~m} / \mathrm{s}}{(340-25) \mathrm{m} / \mathrm{s}}\right)=500 \mathrm{~Hz}\left(\frac{340}{315}\right) \\
& \mathrm{f}^{\prime}=(500 \mathrm{~Hz})(1.079)=540 \mathrm{~Hz}
\end{aligned}
$$

$$
f^{\prime}=500 \mathrm{~Hz}\left(\frac{340}{340+25}\right)=500 \mathrm{~Hz}\left(\frac{340}{365}\right)
$$

$$
f^{\prime}=(500 \mathrm{~Hz})(0.932)=466 \mathrm{~Hz}
$$

$$
f^{\prime}=500 \mathrm{~Hz}\left(\frac{340+25}{340}\right)=500 \mathrm{~Hz}\left(\frac{365}{340}\right)
$$

$$
f^{\prime}=(500 \mathrm{~Hz})(1.074)=537 \mathrm{~Hz}
$$

$$
f^{\prime}=500 \mathrm{~Hz}\left(\frac{340-25}{340}\right)=500 \mathrm{~Hz}\left(\frac{315}{340}\right)
$$

$$
f^{\prime}=(500 \mathrm{~Hz})(0.926)=463 \mathrm{~Hz}
$$

16.54

$$
\mathbf{f}^{\prime}=\mathbf{f}\left(\frac{\mathbf{v}+\mathbf{v}_{\mathbf{o b s}}}{\mathbf{v}+\mathbf{v}_{\mathbf{s}}}\right)
$$

$$
f=550 \mathrm{~Hz}
$$

$$
v=340 \mathrm{~m} / \mathrm{s}
$$

$$
v_{\text {obs }}=0
$$

$$
v_{s}=? \quad \text { (we are looking for the velocity of the source). }
$$

A beat frequency of $2 \mathbf{H z}$ means the frequency heard from the moving train's horn must be different from 550 Hz by 2. Therefore, for the approaching train, the frequency heard must be 552 Hz , and for the train going away, the frequency heard must be 548 Hz .

$$
\begin{aligned}
& f^{\prime}=552 \mathrm{~Hz}=550 \mathrm{~Hz}\left(\frac{340}{340-v_{\mathrm{s}}}\right) \\
& \left(\frac{340}{340-v_{\mathrm{s}}}\right)=\frac{552}{550}=1.0036 \\
& 340=(1.0036)\left(340-\mathrm{v}_{\mathrm{s}}\right)=341.236-1.0036 \mathrm{v}_{\mathrm{s}} \\
& 1.0036 \mathrm{v}_{\mathrm{s}}=1.236 \\
& \mathrm{v}_{\mathrm{s}}=\frac{1.236}{1.0036}=1.23 \mathrm{~m} / \mathrm{s} \\
& f^{\prime}=548 \mathrm{~Hz}=550 \mathrm{~Hz}\left(\frac{340}{340+v_{\mathrm{s}}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{340}{340+v_{s}}\right)=\frac{548}{550}=0.9964 \\
& 340=(0.9964)\left(340+v_{s}\right)=338.764+0.9964 v_{s} \\
& 0.9964 v_{s}=1.236 \\
& v_{s}=\frac{1.236}{0.9964}=1.24 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Remember, however, the "beat frequency of 2 Hz " is stated to only one significant figure. We are unjustified in keeping three significant figures in our answers.

