PHY 1150 Doug Davis Chapter 15; Periodic Motion 15.9, 11, 12, 15, 20, 25, 31, 34, 35

15.9 This is an excellent one to solve with a spreadsheet:

	L				
	А	В	С	D	E
1			"=SQR	Г(С4/В4)/2/3	3.14159
2		Mass	Spg Const	Frequency	
3		(kg)	(N/m)	(Hz = 1/s)	
4	а	1	2.5	0.2516	Hz
5	b	2.5	1	0.1007	Hz
6	С	3	7.2	0.2466	Hz
7	d	50	100	0.2251	Hz
8	e	80	200	0.2516	Hz
9	f	100	250	0.2516	Hz
10	g	120	250	0.2297	Hz
11	h	200	500	0.2516	Hz

 $f = \frac{1}{2} \sqrt{\frac{k}{m}}$

15.11 $f = \frac{1}{2} \sqrt{\frac{k}{m}}$ where k in this equation is the "effective spring constant", the spring constant of a <u>single</u> spring that has the same effect as the combination of springs in the diagram.

With this arrangement, a displacement of x causes a force of PHY 1150, Homework, Chapter 15, page 1

 $F_1 = -k_1x$ due to the spring on the left and a force of $F_2 = -k_2x$ due to the spring on the right.

The net force, then, is $F_{net} = F_1 + F_2 = -k_1x - k_2x = -(k_1 + k_2)x$. Since the effective spring constant, k_{eff} is the constant is $F_{net} = -k_{eff}x$, we can see that

 $\mathbf{k_{eff}} = \mathbf{k_1} + \mathbf{k_2}$

The next arrangement of springs is a little more "tricky" or more interesting:

When the mass is moved a distance x, spring #1 stretches a distance x_1 and spring #2 stretches a distance x_2 with

 $\mathbf{x} = \mathbf{x}_1 + \mathbf{x}_2$

That is, the two springs need <u>not</u> be stretched (or compressed) the same amount at all. However, the <u>force</u> exerted by each spring must be the same. That is, $F_1 = F_2$

or

 $\mathbf{k}_1 \mathbf{x}_1 = \mathbf{k}_2 \mathbf{x}_2$

or

 $x_1 = (k_2/k_1) x_2$

or

 $x_2 = (k_1/k_2) x_1$

To determine the "effective spring constant", we must write the force in the form of

 $F = -k_{eff} x$ We have $F = -k_1 x_1$ and $x = x_1 + x_2$ $x = x_1 + (k_1/k_2) x_1$ $x = [1 + (k_1/k_2)] x_1$ $x_1 = \frac{x}{1 + (k_1/k_2)}$ Therefore, $F = k_1 \left(\frac{x}{1 + (k_1/k_2)}\right)$ $F = k_1 \left(\frac{x}{(k_2/k_2) + (k_1/k_2)}\right)$ $F = -\left(\frac{k_1 k_2}{k_1 + k_2}\right) x$

Therefore,

 $k_{eff} = \frac{k_1 k_2}{k_1 + k_2}$ which can also be written as

 $\frac{1}{k_{eff}} = \frac{1}{k_1} + \frac{1}{k_2}$

The third arrangement of springs is actually fairly easy and straightforward. With this arrangement, a displacement of x causes a force of $F_1 = -k_1x$ due to spring #1 and a force of $F_2 = -k_2x$ due to spring #2. The stretch of each spring is the same as the displacement of the mass.

The net force, then, is $F_{net} = F_1 + F_2 = -k_1x - k_2x = -(k_1 + k_2)x$. Since the effective spring constant, k_{eff} is the constant is $F_{net} = -k_{eff}x$, we can see that

 $\mathbf{k_{eff}} = \mathbf{k_1} + \mathbf{k_2}$

15.12 W = (1/2) k x² W = (1/2) (80 N/m) (0.15 m)² W = 0.9 H

15.15 W = PE = (1/2) k A² = (1/2) (50 N/m) (0.1 m)² = 0.25 J As the mass moves through equilibrium, x = 0, so it has <u>zero</u> potential energy and its total energy is now KE,

KE = (1/2) m v² = (1/2) (0.2 kg) v² = 0.25 J = E v² = 2.5 m²/s²

v = 1.58 m/s

15.20 E = PE_{max} = (1/2) k A²
A = 12 cm = 0.12 m
E = (1/2) (k) (0.12 m)²
E = KE + PE =
$$\frac{1}{2}$$
 m v² + $\frac{1}{2}$ k x²
E = (1/2) m (0.2 m/s² + (1/2) k (0.08 m)² = (1/2) (k) (0.12 m)² = E
m (0.2 m/s)² = k (0.12 m)² - k (0.08 m)²
(m/k)(0.2 m/s)² = (0.12 m)² - (0.08 m)²
(m/k)(0.04) (m/s)² = (0.0144 - 0.0064) m² = 0.0080 m²
PHY 1150, Homework, Chapter 15, page 4

$$(m/k) = 0.2 (1/s^2)$$

T = 2 $\sqrt{\frac{m}{k}}$
T = 2.8 sec

15.25 These multiple-data-set problems are good ones to solve with a spreadsheet. This is basically energy conservation,

 $\begin{array}{l} \mathbf{E} = (1/2) \mathbf{k} \mathbf{A}_2 = (1/2) \mathbf{k} \mathbf{x}_2 + (1/2) \mathbf{m} \mathbf{v}_2 \\ \mathbf{k} \mathbf{A}^2 = \mathbf{k} \mathbf{x}^2 + \mathbf{m} \mathbf{v}^2 \\ \mathbf{m} \mathbf{v}^2 = \mathbf{k} (\mathbf{A}^2 - \mathbf{x}^2) \\ \mathbf{v}^2 = (\mathbf{m}/\mathbf{k}) (\mathbf{A}^2 - \mathbf{x}^2) \\ \mathbf{v} = \sqrt{\frac{\mathbf{k}}{\mathbf{m}} (\mathbf{A}^2 - \mathbf{x}^2)} \end{array}$

So this will be the formula we put in the spreadsheet:

	А	В	С	D	E	F		
1			'=SQRT((C4/B4)*(D4*D4-E4*E4))					
2		mass	spg cnst	Amplitude	position	velocity		
3		(kg)	(N/m)	(m)	(m)	(m/s)		
4	а	0.18	3.5	0.2	0.1	0.7638		
5	b	0.18	3.5	0.2	0.15	0.5833		
6	С	0.28	3.5	0.2	0.18	0.3082		
7	d	0.35	5	0.25	0.05	0.9258		
8	e	0.35	5.5	0.25	0.1	0.9083		
9	f	0.5	5.5	0.25	0.1	0.7599		
10	g	0.5	5.5	0.25	0.15	0.6633		
11	h	0.5	5.5	0.3	0.15	0.8617		

$$f = \frac{1}{2} \sqrt{\frac{k}{m}}$$

$$f^{2} = (1/4 \ 2) \frac{k}{m}$$

 $f^{2} = (1/4 \ ^{2}) m$ $k = 4 \ ^{2} f^{2} m$ $k = 4 \ ^{2} [2 (1/2)]^{2} (0.5 kg)$ $k = 79 kg/s^{2}$ k = 79 N/m

15.34 T = 2.00 s
T = 2
$$\sqrt{\frac{1}{g}}$$

T² = 4 ² (l/g)
l = (1/4 ²)T² g
l = 0.993 m
15.35 T = 2 $\sqrt{\frac{1}{g}}$
T = 2 $\sqrt{\frac{1.0 \text{ m}}{9.8 \text{ m/s}^2}}$
T = 2.007 seconds

(That is, this is <u>almost</u> a "seconds pendulum").