15.9 This is an excellent one to solve with a spreadsheet:

$$
f=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}
$$

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	E
$\mathbf{1}$			"=SQRT(C4/B4)/2/3.14159		
$\mathbf{2}$		Mass	Spg Const		Frequency
$\mathbf{3}$		(kg)	$(\mathrm{N} / \mathrm{m})$	$(\mathrm{Hz}=1 / \mathrm{s})$	
$\mathbf{4}$	a	1	2.5	0.2516	Hz
$\mathbf{5}$	b	2.5	1	0.1007	Hz
$\mathbf{6}$	c	3	7.2	0.2466	Hz
$\mathbf{7}$	d	50	100	0.2251	Hz
$\mathbf{8}$	e	80	200	0.2516	Hz
$\mathbf{9}$	f	100	250	0.2516	Hz
$\mathbf{1 0}$	g	120	250	0.2297	Hz
$\mathbf{1 1}$	h	200	500	0.2516	Hz

$15.11 \begin{aligned} & f=\frac{1}{2} \pi \\ & \sqrt{\frac{k}{m}}\end{aligned}$ where k in this equation is the "effective spring constant", the spring constant of a single spring that has the same effect as the combination of springs in the diagram.

With this arrangement, a displacement of x causes a force of PHY 1150, Homework, Chapter 15, page 1
$F_{1}=-k_{1} x$ due to the spring on the left and a force of $F_{2}=-k_{2} x$ due to the spring on the right.
$\underset{|\rightarrow|}{\substack{x \\|\rightarrow|}}$

The net force, then, is $F_{\text {net }}=F_{1}+F_{2}=-k_{1} x-k_{2} x=-\left(k_{1}+k_{2}\right) x$. Since the effective spring constant, $k_{\text {ef }}$ is the constant is $F_{\text {net }}=-k_{\text {eff }} X$, we can see that

$$
k_{\text {eff }}=k_{1}+k_{2}
$$

The next arrangement of springs is a little more 'tricky" or more interesting:

When the mass is moved a distance x, spring \#1 stretches a distance x_{1} and spring \#2 stretches a distance x_{2} with

$$
x=x_{1}+x_{2}
$$

That is, the two springs need not be stretched (or compressed) the same amount at all. However, the force exerted by each spring must be the same. That is,

$$
F_{1}=F_{2}
$$

or

$$
k_{1} x_{1}=k_{2} x_{2}
$$

or

$$
x_{1}=\left(k_{2} / k_{1}\right) x_{2}
$$

or

$$
x_{2}=\left(k_{1} / k_{2}\right) x_{1}
$$

To determine the "effective spring constant", we must write the force in the form of

$$
F=-k_{\text {eff }} X
$$

We have

$$
F=-k_{1} x_{1}
$$

and

$$
\begin{aligned}
& x=x_{1}+x_{2} \\
& x=x_{1}+\left(k_{1} / k_{2}\right) x_{1} \\
& x=\left[1+\left(k_{1} / k_{2}\right)\right] x_{1} \\
& x_{1}=\frac{x}{1+\left(k_{1} / k_{2}\right)}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& F=k_{1}\left(\frac{x}{1+\left(k_{1} / k_{2}\right)}\right) \\
& F=k_{1}\left(\frac{x}{\left(k_{\mathbf{2}} / k_{2}\right)+\left(k_{1} / k_{2}\right)}\right) \\
& F=-\left(\frac{k_{1} k_{2}}{k_{1}+k_{2}}\right) x
\end{aligned}
$$

Therefore,

$$
k_{\text {eff }}=\frac{k_{1} k_{2}}{k_{1}+k_{2}}
$$

which can also be written as

$$
\frac{1}{k_{\text {eff }}}=\frac{1}{k_{1}}+\frac{1}{k_{2}}
$$

The third arrangement of springs is actually fairly easy and straightforward. With this arrangement, a displacement of x causes a force of $F_{1}=-k_{1} x$ due to spring \#1 and a force of $F_{2}=-k_{2} x$ due to spring \#2. The stretch of each spring is the same as the displacement of the mass.

The net force, then, is $F_{\text {net }}=F_{1}+F_{2}=-k_{1} x-k_{2} x=-\left(k_{1}+k_{2}\right) x$. Since the effective spring constant, $k_{\text {eff }}$ is the constant is $F_{\text {net }}=-k_{\text {eff }} x$, we can see that

$$
k_{\text {eff }}=k_{1}+k_{2}
$$

15.12 $\mathbf{W}=(1 / 2) k x^{2}$
$W=(1 / 2)(80 \mathrm{~N} / \mathrm{m})(0.15 \mathrm{~m})^{2}$
$W=0.9 \mathrm{H}$
15.15 W = PE $=(1 / 2) k A^{2}=(1 / 2)(50 \mathrm{~N} / \mathrm{m})(0.1 \mathrm{~m})^{2}=0.25 \mathrm{~J}$

As the mass moves through equilibrium, $x=0$, so it has zero potential energy and its total energy is now KE,
$K E=(1 / 2) \mathrm{m} \mathrm{v}^{2}=(1 / 2)(0.2 \mathrm{~kg}) \mathrm{v}^{2}=0.25 \mathrm{~J}=E$
$v_{2}=2.5 \mathrm{~m}^{2} / \mathrm{s}^{2}$
$\mathrm{v}=1.58 \mathrm{~m} / \mathrm{s}$
15.20 $E=P E_{\text {max }}=(1 / 2) \mathrm{k} \mathrm{A}^{2}$
$A=12 \mathrm{~cm}=0.12 \mathrm{~m}$
$E=(1 / 2)(k)(0.12 \mathrm{~m})^{2}$
$E=K E+P E=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}$
$E=(1 / 2) \mathrm{m}\left(0.2 \mathrm{~m} / \mathrm{s}^{2}+(1 / 2) k(0.08 \mathrm{~m})^{2}=(1 / 2)(k)(0.12\right.$
$m)^{2}=E$
$\mathrm{m}(0.2 \mathrm{~m} / \mathrm{s})^{\mathbf{2}}=\mathrm{k}\left(\mathbf{0 . 1 2 \mathrm { m }) ^ { 2 } - \mathrm { k } (0 . 0 8 \mathrm { m }) ^ { 2 }}\right.$
$(\mathrm{m} / \mathrm{k})(0.2 \mathrm{~m} / \mathrm{s})^{2}=(0.12 \mathrm{~m})^{2}-(0.08 \mathrm{~m})^{2}$
$(\mathrm{m} / \mathrm{k})(0.04)(\mathrm{m} / \mathrm{s})^{2}=(0.0144-0.0064) \mathrm{m}^{2}=0.0080 \mathrm{~m}^{2}$
PHY 1150, Homework, Chapter 15, page 4

$$
\begin{aligned}
& (\mathrm{m} / \mathrm{k})=0.2\left(1 / \mathrm{s}^{2}\right) \\
& T=2 \pi \sqrt{\frac{\mathrm{~m}}{k}} \\
& T=2.8 \mathrm{sec}
\end{aligned}
$$

15.25 These multiple-data-set problems are good ones to solve with a spreadsheet. This is basically energy conservation,

$$
\begin{aligned}
& E=(1 / 2) k A_{2}=(1 / 2) k x_{2}+(1 / 2) m v_{2} \\
& k A^{2}=k x^{2}+m v^{2} \\
& m v^{2}=k\left(A^{2}-x^{2}\right) \\
& v^{2}=(m / k)\left(A^{2}-x^{2}\right) \\
& v=\sqrt{\frac{k}{m}\left(A^{2}-x^{2}\right)}
\end{aligned}
$$

So this will be the formula we put in the spreadsheet:

	A	B	c	D	E	F
1			'=SQRT((C4/B4)*(D4*D4-E4*E4))			
2		mass	spg cnst	Amplitude	position	velocity
3		(kg)	(N/m)	(m)	(m)	(m/s)
4	a	0.18	3.5	0.2	0.1	0.7638
5	b	0.18	3.5	0.2	0.15	0.5833
6	c	0.28	3.5	0.2	0.18	0.3082
7	d	0.35	5	0.25	0.05	0.9258
8	e	0.35	5.5	0.25	0.1	0.9083
9	f	0.5	5.5	0.25	0.1	0.7599
10	g	0.5	5.5	0.25	0.15	0.6633
11	h	0.5	5.5	0.3	0.15	0.8617

$15.31 \begin{array}{r}\mathrm{f}=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}\end{array}$

$$
\begin{aligned}
& \mathrm{f}^{2}=\left(1 / 4 \pi^{2}\right) \frac{\mathrm{k}}{\mathrm{~m}} \\
& \mathrm{k}=4 \pi^{2} \mathrm{f}^{2} \mathrm{~m} \\
& \mathrm{k}=4 \pi^{2}[2(1 / 2)]^{2}(0.5 \mathrm{~kg}) \\
& \mathrm{k}=79 \mathrm{~kg} / \mathrm{s}^{2} \\
& \mathrm{k}=79 \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

$15.34 \mathrm{~T}=2.00 \mathrm{~s}$

$$
\begin{aligned}
& T=2 \pi \sqrt{\frac{I}{g}} \\
& T^{2}=4 \pi^{2}(I / g) \\
& I=\left(1 / 4 \pi^{2}\right) T^{2} g \\
& I=0.993 \mathrm{~m}
\end{aligned}
$$

$15.35 \mathbf{T}=2 \pi \sqrt{\frac{!}{g}}$

$$
\begin{aligned}
& \mathrm{T}=2 \pi \sqrt{\frac{1.0 \mathrm{~m}}{9.8 \mathrm{~m} / \mathrm{s}^{2}}} \\
& \mathrm{~T}=2.007 \text { seconds }
\end{aligned}
$$

(That is, this is almost a "seconds pendulum").

