
PHYsics 1150
Howmework Solutions

Chapter 13, Heat Transfer
Ch 13:  5, 17, 21, 24, 26, 30

13.5  A goose-down sleeping bag has a surface area of 2.25 m2 and is filled iwth a
layer of down 5 cm thick.  What is the heat-transfer rate (Hcd) through it from a

person with skin temperature of 35°C to the outside air at –5°C.  How does this rate
compare with the body’s minimal metabolism rate, about 100 W?

From Table 13,1, p 457, we find the thermal conductivity of goose down to be

K = 0.023 W /m C°
We can now apply the conduction heat-transfer equation, Eq 13.1,

Hcd = [KA(T2 – T1] /  L
From the problem, we know the other pieces of this equation,

∆T = T2 – T1 = 35°C – (– 5°C) = 40 C°

A = 2.25 m2

L = 5 cm = 0.05 m

Hcd = [KA(T2 – T1] /  L

Hcd = [(0.023W/m C°)(2.25 m2)(40 C°)]/0.05 m =

Hcd = 41 W

This is about half of the body’s normal metabolism so this sleeping bag should keep
our camper a “happy camper” (or, at least, a warm camper).
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13.17  A lamp bulb inside an ornamental spherical glass shell 20 cm in radius and
0.50 cm thick radiats 100 W of thermal power.  What is the difference in
temperature between the inner and outer surfaces of the glass?

(Hmmm, . . . go ahead and use e = 1.00, even in this case).

r1 = 20.0 cm

r2 = 20.5 cm

T1 = ?

T2 = ?

To find the temperature, we can use the Radiation equation, Eq 13.4,

Remit = e σ A T4

We will use e ≈ 1.0, even for this.  σ is the Stefan-Boltzman constant,

σ = 5.67 x 10–8 W/m2 K4

The surface area of a sphere is

A = (4/3) π r2

For the inner surface,

Ainner = (4/3) π (0.200 m)2 = 0.1676 m2

For the outer surface,

Aout = (4/3) π (0.205 m)2 = 0.1760 m2

The temperatures T must be absolute temperatures, measured on the Kelvin scale.
Now we are ready to solve for the temperaturs

T4 = Remit / e σ A

Tinner4 =  100 W/[(1.0)(5.67 x 10–8 W/m2 K4)(0.1676 m2)] = 1.0523 x 1010 K4

Tinner = 320.3 K

Touter4 =  100 W/[(1.0)(5.67 x 10–8 W/m2 K4)(0.1760 m2)] = 1.0078 x 1010 K4

Touter = 316.8 K

Our use of e = 1.0 makes our actual numbers rather “iffy”.  But the point of this
problem was to show that the inner surface will be at a higher temperature than the
outer surface.  That is certainly true for our calculation.  Changing the value of the
emissivity e may change our actual numbers but we will still find Tinner > Touter.
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13. 21  Victoria, Canada, is located at 48.5° north latitude.  How high above the
horizon is the Sun on the first day of summer and the first day of winter?

N

S

Z

48.5°

N and S mark the poles, the axis of rotation.  Z is the zenith, the point directly
overhead, 48.5° from the equator (48.5° north latitude).

Summer: 

23.5°

θ = 48.5° – 23.5° = 25°
SUN

N

S

Z

θ is the angle from directly overhead (the zenith) to the Sun.  Therefore, the angle

between the horizon and the Sun will be 90° – θ = 90° – 25° = 65°.  The Sun will be
65° above the horizon at the summer solstice.
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Winter:

23.5°

θ = 48.5° + 23.5° = 72°
SUN

N

S

Z

48.5°

θ is again the angle between directly overhead (the zenith) and the Sun.  Therefore,
the Sun is 90° – 72° = 18° above the horizon at the winter solstice.
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13.24  A solar home is to be built in Minneapolis, 45° north latitude.  What is the
elevation of the Sun at midday on the first day of summer and on the first day of
winter?  An overhaning eave 85 cm wide is planned.  How far below this eave will
sunlight fall on the first day of summer and the first day of winter.

The first part of this questions requires exactly the same reasoning, using exactly the
same kind of diagrams, as question 13.21.

N

S

Z

45°

N and S mark the poles, the axis of rotation.  Z is the zenith, the point directly
overhead, 45° from the equator (45° north latitude).

Summer:  

23.5°

θ = 45° – 23.5° = 21.5°
SUN

N

S

Z

If the Sun is 21.5° from the zenith (the position directly overhead) then it must be
90° – 21.5° = 68.5° above the horizon.
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Winter:  

23.5°

θ = 45° + 23.5° = 68.5°
SUN

N

S

Z

48.5°

If the Sun is 68.5° from the zenith, then it must be 90° – 68.5° = 21.5° above the
horizon.

Now we can look at the shadow cast by the eave on these two days:

Summer:  

85 cm 68.5°

S = ?

shadow

sunlight

The length of the shadow, S in the diagram, is the opposite side of a 68.5° right
triangle (85 cm is the adjacent side).

tan θ = opp/adj

tan 68.5° = S / 85 cm

S = (85 cm)(tan 68.5°)

S = (85 cm)(2.54) = 216 cm = 2.16 cm
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Winter:  

85 cm 21.5°

S = ? shadow

sunlight

The length of the shadow, S in the diagram, is the opposite side of a 21.5° right
triangle (85 cm is the adjacent side).

tan θ = opp/adj

tan 21.5° = S / 85 cm

S = (85 cm)(tan 21.5°)

S = (85 cm)(0.393) = 33.5 cm

13.26  Calculate the R value of an insulated wall like that in Figure 13.30 if 2 x 6’s are

used for wall studs instead of 2 x 4’s.  The larger board allow 5.5 in of fiberglass
insulation instead of 3.5 in.
By what percentage does this increase in thickness change the R value?
How does the increased thickness change the heat loss calculated in Example 13.14?

The R-values for the components of the wall in Figure 13.30 are given in Table 13.4,
on page 481.  By increasing the fiberglass insulation from 3.5 inches to 5.5 inches, the
R-value for this insulation increases from 10.90 to 18.80, according to Table 13.3, on
page 480.  This increases the total R-value from 14.33 to 22.23.

This is an increase of  7.9/14.33 = 0.55 = 55% for the R-value of the wall.

In terms of R-values, the conduction heat transfer rate is given by equation 13.9,

Hcd = A(T2 – T1) / R = (1/R) [A (T2 – T1)]

In Example 13.14, we found the conduction heat transfer rate to be
Hcd(un) = 3.8 kW for the uninsulated wall,
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Hcd(3.5) = 1.2 kW for the insulated wall with 2x4’s and 3.5 in of insulation

Now, with 2x6’s and 5.5 in of insulation,

Hcd(5.5) = (1/22.23)[(960)(60)] = 2591 Btu/h = 0.76 kW

This is a reduction of heat flow by

∆H = 1.18 kW – 0.76 kW = 0.42 kW

∆H / H = 0.42 kW / 1.18 kW = 0.36 = 36%

13.30  A roasted turkey cools from 85°C to 80°C in 10 min when sitting in a 25°C
room.  How long does it require to cool from 85°C to 55°C?

This requires an application of Newton’s Law of Cooling, equation 13.3,

T(t) = Tsur  +  ∆T e–t/τ

∆T is the initial temperature difference of the turkey and its surroundings;

 ∆T = 85°C – 25°C = 60 C°

Knowing that it cools from 85°C to 80°C allows us to solve for the “time constant” τ
in this equation;

T(t) = Tsur  +  ∆T e–t/τ

T(10 min) = 80°C = 25°C  +  (60 C°) e–(10 min)/τ

55°C  =  (60 C°) e–(10 min)/τ

55°C/60°C  =  e–(10 min)/τ

55/60  =  e–(10 min)/τ

0.9167  =  e–(10 min)/τ

e–(10 min)/τ = 0.9167

ln[e–(10 min)/τ ] = ln[0.9167]

–(10 min)/τ = –0.0870

10 min/τ  = 0.0870

τ = (10 min)/0.0870

τ = 115 min

Now we know the time constant τ and we can use Newton’s Law of Cooling to go
back and solve for t, the time, when T, the temperature, is 55°C.

T(t) = Tsur  +  ∆T e–t/τ

T(t) = 55°C = 25°C  +  (60 C°) e–t/(115 min)
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55°C = 25°C  +  (60 C°) e–t/(115 min)

30°C = (60 C°) e–t/(115 min)

30°C/60°C = e–t/(115 min)

30/60 = e–t/(115 min)

0.50 = e–t/(115 min)

ln[0.50] = ln[e–t/(115 min)]
–0.693 = –t/(115 min)

0.693 = t/(115 min)
t = (0.693)(115 min)

t = 78 min

Ch 13 – page 9


