Factoring Trinomials

by Chad Mattingly

1 monic trinomials $\left(x^{2}+b x+c\right)$

If $x^{2}+b x+c$ factors over the integers, the two factors must be of the form $(x+m)$ and $(x+n)$ for some integers m and n :

$$
x^{2}+b x+c=(x+m)(x+n)=x^{2}+n x+m x+m n=x^{2}+(m+n) x+m n
$$

So to factor $x^{2}+b x+c$, we only need to find m, n such that $m \cdot n=c$ and $m+n=b$. If no such m and n exist, the polynomials is prime.

We find m, n by making a list of candidates that satisfy one of these conditions, and see if any satisfy the other condition. Since we cannot list of all the m, n that have sum b, we list all m, n with product c, and check to see if anyof them add up to b :

Example: Factor $x^{2}+5 x-24$
We need $m n=-24$ and $m+n=5$
We list all of the pairs of integers with product -24 , and see if any have a sum of 5 , starting with $m=1$, working up through all the numbers that evenly divide 24:

m	n	$m+n$	
1	-24	-23	
2	-12	-10	
3	-8	-5	
4	-6	-2	
6	-2	4	
8	-3	5	\leftarrow these add up to 5, so $x^{2}+b x+c=(x+8)(x-3)$
12	-2	10	
24	-1	23	

This is the basic idea of factoring $x^{2}+b x+c$. We check pairs of numbers with product equal to c, until we find one with the sum of b.

There is no reason to continue listing potential pairs of m and n after we find the one with the desired sum, but I've listed them all to illustate two points:

First, we must check all possible values of m and n until the desired sum is achieved. If that sum is never achieved by any of the possible values, it means $x^{2}+b x+c$ is prime, so you should be able to form the whole list to verify that a trinomial is prime.

Second, this list was longer than it really had to be. With a little thought, we can minimize the number of candidates for m and n and shorten this list by looking at the signs of c and b :

2 Optimizing our search for m and n

sign of the product:
We needed $m n=-24$, a negative product, so m and n must have opposite signs.
(If m and n had a positive product, they would have had the same sign.)
sign of the sum:
We needed $m+n=5$, a positive sum, so the positive number must be "larger" in the sense of its absolute value. I signify this by writing $|+|>|-|$

In light of these discoveries, we now know we're looking for a "large" positive number and a small negative number, so our list is half as long.

m	n	$m+n$	
-1	24	23	\leftarrow notice I'm starting with $m=-1$ now
-2	12	10	
-3	8	5	\leftarrow we found it much sooner!
-4	6	2	

In general, there are 4 possible cases:

3 non-monic trinomials $\left(a x^{2}+b x+c\right.$)

First, do not use either of these methods until you have checked to see if:

1. there is a GCF - Your work will be much harder if you don't factor out a GCF first.
2. this is a special product - perfect square trinomial or difference of squares.

If $a x^{2}+b x+c$ factors over the integers, the two factors must be of the form $(p x+q)$ and $(r x+s)$ for some integers p, q, r, and s.

There are two methods to find these binomial factors- "Guess and Check" and "Factoring by Grouping"

3.1 Guess and Check

We try various p, r such that $p r=a$, and for each pair, we check all possible q, s such that $q s=c$ until we find $(p x+q)(r x+s)=a x^{2}+b x+c$

This method is easy to learn, and works well for simple trinomials, but when a and c have many factors, it becomes tiresome to list all the possibilities, especially if none work (the trinomial is prime).

Example: Factor $6 x^{2}-7 x-20$ by Guess and Check.

p	r	q	s	
6	1	1	-20	$(6 x+1)(x-20)$
6	1	2	-10	$(6 x+2)(x-10)$
6	1	4	-5	$(6 x+4)(x-5)$
6	1	5	-4	$(6 x+5)(x-4)$
6	1	10	-2	$(6 x+10)(x-2)$
6	1	20	-1	$(6 x+20)(x-1)$

p	r	q	s		
3	2	1	-20	$(3 x+1)(2 x-20)$	
3	2	2	-10	$(3 x+2)(2 x-10)$	
3	2	4	-5	$(3 x+4)(2 x-5)$	\leftarrow aha!
3	2	5	-4	$(3 x+5)(2 x-4)$	
3	2	10	-2	$(3 x+10)(2 x-2)$	
3	2	20	-1	$(3 x+20)(2 x-1)$	

3.2 Factoring by Grouping

3.2.1 the procedure

To factor $a x^{2}+b x+c$ by grouping:

- Find integers m, n such that $m \cdot n=a c$ and $m+n=b$.
- If such m, n exist, replace $b x$ with $m x+n x$, and factor by grouping.
- If such m, n don't exist, $a x^{2}+b x+c$ has no binomial factors, and so is prime, unless theres a GCF you missed.

Example: Factor $6 x^{2}-7 x-20$ by grouping:
We must find m, n such that:

- $m n=(6)(-20)=-120$ so m and n have opposite signs and
- $m+n=-7$ so the negative number has larger absolute value $|-|>|+|$

This is the same process we use with the monic trinomials, except we will now do something else with m and n when we find them. While you could factor a monic trinomial by grouping, it is a complete waste of time.

We list all of the pairs of integers with product -120 , where the negative number has larger absolute value, and see if any have a sum of -7 , starting with $m=1$, working up through all the numbers that evenly divide 24 :

m	n	$m+n$	
1	-120	-119	
2	-60	-58	
3	-40	-37	
4	-30	-26	
5	-24	-19	
6	-20	-14	
8	-15	-7	\leftarrow aha!
10	-12	-2	

Now, we can factor by grouping:

$$
6 x^{2}+-7 x-20=6 x^{2}+8 x-15 x-20=2 x(3 x+4)-5(3 x+4)=(3 x+4)(2 x-5)
$$

3.2.2 derivation - for the curious only!

Multiplying the factors on the right side, we see that:

$$
a x^{2}+b x+c=(p x+q)(r x+s)=p r x^{2}+p s x+q r x+q s=p r x^{2}+(p s+q r) x+q s
$$

So $a=p r, b=p s+q r$, and $c=q s$. Notice that $a c=p r q s$ contains all four unknown integers, and so does $b=p s+q r$. We can rearrange $a c=p s q r=(p s)(q r)$.

Now, if we represent $p s$ with the new variable m and $q r$ with n, we can reformulate our problem of finding p, q, r, s as the following:

Find integers m, n such that $m n=a c$ and $m+n=b$. If they exist, we may factor thusly:

$$
a x^{2}+b x+c=a x^{2}+m x+n x+c=p r x^{2}+p s x+q r x+q s=p x(r x+s)+q(r x+s)=(r x+s)(p x+q)
$$

