A few challenging problems

1) Find all functions \(f \) such that \(f' \) is continuous and

\[
[f(x)]^2 = 100 + \int_{0}^{x} \{ |f(t)|^2 + [f'(t)]^2 \} dt
\]

for all real \(x \).

2) Let \(f \) be a function with the property that \(f(0) = 1 \), \(f'(0) = 1 \), and \(f(a + b) = f(a)f(b) \) for all real numbers \(a \) and \(b \). Find \(f \).

3) Find all functions that satisfy the equation

\[
\left(\int f(x)dx \right) \left(\int \frac{dx}{f(x)} \right) = -1
\]

4) Find the curve that passes through the point \((3, 2)\) and has the property that if the tangent line is drawn at any point \(P \) on the curve, then the part of the tangent line that lies in the first quadrant is bisected at \(P \).

5) Let \(f \) be a positive real-valued differentiable function. Let \(f'(x) > f(x) \) for all \(x \). For what integers \(k \) must there exist an integer \(N \) such that \(f(x) > e^{kx} \) for all \(x > N \).

6) Let \(f \) be a twice-differentiable function that satisfies

\[
f(x) + f''(x) = -xg(x)f'(x)
\]

where \(g(x) > 0 \) for all \(x \). Prove that \(|f(x)| \) is bounded.

7) Let \(f \) be a real-valued function with a continuous third derivative such that \(f(x), f'(x), f''(x), f'''(x) \) are positive for all \(x \). Suppose that \(f'''(x) \leq f(x) \) for all \(x \). Show that \(f'(x) < 2f(x) \) for all \(x \).