Real Analysis Final Summer 2008

1) Provide an example or state that no such example exists. Solve ezactly five (3 points each).
a) A function f : (a,b) — R that is differentiable on the interval (a,b) but not uniformly
continuous on (a, b).

Example: f(z) = I is differentiable on (0,1) but not uniformly continuous on (0,1).
b) A function f : (a,b) — R that is uniformly continuous on (a,b) but not differentiable
on (a,b).

Example: f(z) = |z| is not differentiable on (—1,1) and it is uniformly continuous on any
interval.

¢) A continuous function f : R — R and a closed subset G of R such that f(G) is not
closed.

Example: when f(z) = e” and G = R (a closed set), f(G) = (0,00), which is open and
not closed.

d) A continuous function f : R — R and an open subset H of R such that f(H) is not
open.

Example: when f(x) =0 for all z € R and H = R (an open set), f(H) = {0}, which is
closed and not open.

e) A one-to-one (injective) function f : R — R that is continuous on R and an open set
G C R such that f(G) is not open.

No such example exists. See exercise 22.11 in [1].

f) A function f : [a,b] — R that is differentiable on [a, b] but not Riemann integrable on
la, b].

No such example exists since differentiability on [a, b] implies continuity on [a, b] and con-
tinuous functions on closed and bounded intervals are always integrable.

g) A function f : [a,b] — R that is differentiable on [a,b] and f’ is not integrable on [a, b].

Example: let f:[—1,1] — R be defined as

0 ifex=0
J(x) = {xQ sin (QC—IQ) ifx#0

Now f’ is unbounded on [—1, 1], and hence, not integrable.

2) Prove or provide a counterexample. Solve ezactly five (3 points each).

a) If f: (a,b) — R is differentiable on (a,b) and f is strictly decreasing on (a,b), then
f'(z) <0 for all z € (a,b).

Counterexample: f(z) = —z? is strictly decreasing and differentiable on (—1,1) and
f(0) =0.

b) Let f: D — Rand g : D — R be two real-valued functions defined on the domain
D C R.If f and g are both uniformly continuous on D, then f— g is also uniformly continuous
on D.

Proof. Let € > 0 be given. There exists a §; > 0 such that when z,y € D and |z — y| < d;,
|f(z) — f(y)| < €/2. Also there exists a d2 > 0 such that when z,y € D and |z — y| < d,
lg(x) — g(y)| < €/2. Now let § = min{d;,d2} and observe that when |x —y| <6, |(f — g)(x) —



(f=9) )| <|f(x)=fy)|+|9(z)—g(y)| < /24 €/2 = e. This establishes uniform continuity
of f—gon D. O

c) If f:R — R is a continuous and bounded function on R, then f assumes its maximum
value or its minimum value.

Counterexample: f(x) = tan~!z is continuous and bounded on R with the property that
the maximum and minimum values are both not attained/assumed; tan™! z is an increasing
function bounded between its horizontal asymptotes y = 4 /2.

d) Suppose f : R — R is differentiable on R. Then for every ¢ € R, there exist a,b € R
such that a < ¢ < b and f'(c) = W

Counterexample: when f(z) = 2%, f/(0) = 0 and for all @ < 0 < b, 1) a( 9 > ( because
the function is strictly increasing.

e) Let f : (a,b) — R and ¢ : (a,b) — R be two functions and let ¢ € (a,b). If fg is
differentiable at ¢ and g is differentiable at ¢, then f is also differentiable at c.

Counterexample: let f(z) = |z| and let g(z) = z, and then observe that z|z| and x are
both differentiable at 0 but |z| is not differentiable at zero.

f) Let f : [a,b] — R be bounded on [a,b]. If f? is integrable on [a, b], then so is f.

Counterexample: let f:[0,1] — R be defined by

fz) =

1 if x is rational
—1 if x is irrational

Now observe that f2 is a constant function, and hence, integrable. However, f is not integrable
because L(f, P) = —1 and U(f, P) = 1 for any partition of P, which implies that L(f) = —1

and U(f) =
g) Let f [a b] — R be integrable on [a,b]. Then there exists a ¢ € [a,b] such that
f(c)(b—a) f fdx.

Counterexample: let f:[—1,1] — R be defined by

1 ifz>0
f@)_{—1 if 2 <0

Let P, ={-1,—-14++, —1+2,...,0,2, 2 .. 1} and notice that U(f, P,,) = 2, L(f, P,)
This implies that U(f) < 0 and (f) > 0. Smce U(f) > L(f), we have U(f) = L(f)
that is, f_ll fdx =0.

In our present context, f(c)(b— a) f fdx is the equation 2f(c) f fdr =0.So a
solution exists if and only if there is a ¢ € [a, b] such that f(c) = 0. Note that no such point
exists.

0.
0,

3) Provide solutions for ezactly two of the following (10 points each).
a) Let f : (a,b) — R be a function that satisfies |f(z) — f(y)| < (x—y)? for all 2,y € (a,b).
Prove that f is constant on (a,b).



Proof. Let ¢ be a point in (a,b) and note that |f(z) — f(c)| < (z — ¢)? for all x € (a,b). This
implies that for all x € (a,b) and x # ¢,

2 _ 2
J@=e?| S =@ [a=0
T —c T —c T —c
Now since ) )
tim — [EZ | o[BS
Tr—cC Tr — C Tr—cC Tr — C ’
f/(C) — lim f(ﬂf) B f(C) =0.
z—c T —C
So f’ is identically equal to zero on (a,b), which implies that f is constant on (a, b). ]

b) Show that |logz — logy| < |x — y| for all # > 1 and all y > 1. Use this inequality
to prove that logx is uniformly continuous on [1,00). Also, show that log x is not uniformly
continuous on (0, 1].

Proof. Let f(x) = logx and assume that x,y € [1,00), with  # y. The Mean Value Theorem
implies that there exists a ¢ € (z,y) such that %f;(y) = f'(c) = % Notice that when ¢ > 1,

0<I<1Sol|f(x)— fy)|=2lz—y|<l|z—y|forall z,y e [l,00), with  # y. Also, this
inequality holds trivially when = = y. This establishes that |logz — logy| < |z — y| for all
xr>1andall y > 1.

Now let € > 0 be given and then let 6 = e. So when z,y € [1,00) and |z — y| < J =€, we
have [logz — logy| < |z — y| < e. This proves that logz is uniformly continuous on [1, 00).

Consider the cauchy sequence (s,) in (0, 1] defined by the equation s, = % for n € N.
It suffices to show that (f(s,)) = (—logn) is not cauchy in order to prove that logz is not
uniformly continuous on (0,1]. We will show that (—logn) is not cauchy by proving that
(—logn) is not bounded. Let M > 0 be given and then choose N € N such that N > M.
Observe that | — log N| > loge™ = M—this follows from the fact that logz is an increasing
function (f'(z) = X > 0 for x > 0). So (—logn) is not bounded, and therefore, log x is not

uniformly continuous on (0, 1]. O

c) Let f: R — R be a function defined as follows.

fz) =

{ x2 if x is rational

—2? if z is irrational
Show that f is continuous only at 0. Is f differentiable anywhere? Explain.

Proof. Suppose f is continuous at some x € R. Let (z,) be a sequence of rationals converging
to x and let (y,,) be a sequence of irrationals converging to z. So lim f(z,) = z? and lim f(y,) =
—22. Since f is continuous at x, 22 = —x?, which is only possible at £ = 0. So f is not
continuous when x # 0. This also means that f is not differentiable when = # 0.



We will now show that f’(0) = 0. For all = # 0, we have

2 _ 2
2| _ f@) - f(0) _ x_‘
x| z—0 Tz
Now since
2 2
lim — |—| = lim |—| =0,
z—0 T z—0| x
f(z) — f(0)
'0) =1 =0.
£1(0) = lim ——"—
This also proves that f is continuous at 0. [

d) Suppose that f : [a,b] — R is continuous on [a,b] and fab (f(z))*dx = 0. Prove that
f(z) =0 for all = € [a, b].

Proof. Let g(x) = (f(x))* and observe that g is continuous on [a,b], g(x) > 0 on [a,b], and
L(g) = 0 (because fabgdx = 0). Now exercise 29.7 in [1] implies that ¢ is identically zero on
[a,b]. Since g(x) = (f(x))*, f must be identically equal to zero on [a, b]. O

e) If f:1]0,1] — [0,2] is a differentiable on [0, 1], with f(0) = 0 and f(1) = 2, then there
exists a point ¢ € [0, 1] such that f’(c) = 2. You may assume that f’ is continuous on [0, 1] to
simplify the proof; however, this result holds even when f’ is not a continuous function.

Proof. The simplest approach is to apply the Mean Value Theorem. There exists a ¢ € (0,1)
such that f'(c) = w = 2. There are at least two other proofs that do not (directly)
utilize the Mean Value Theorem; these are outlined below.

If there exist points =,y € [0, 1] such that f'(x) < 2 and f'(y) > 2, then the Intermediate
Value Theorem for Derivatives would imply that there exists a point ¢ € [0,1] such that
f'(c) = 2. If we assume that f’ is continuous on [0, 1], the Intermediate Value Theorem (for
continuous functions) is sufficient and we need not employ the Intermediate Value Theorem
for Derivatives.

So assume that either f'(z) < 2 for all z € [0,1] or f'(x) > 2 for all z € [0,1]. Now
if f’ is continuous on [0, 1], f’ is integrable on [0, 1], and we may apply the Fundamental
Theorem of Calculus to conclude that 2 = f(1) — f(0) = fol f'(x) dz. However, if f'(x) < 2
for all z € [0,1], we have fol fl(z)dx < f012dx = 2. Similarly, if f'(z) > 2 for all z € [0, 1],
we have fol f(z)dzx > fol 2dx = 2. In both cases we contradict our earlier conclusion that

fol f'(x) dx = 2. This completes the proof when f’ is continuous on [0, 1].

Now suppose that f’ is not continuous on [0, 1]. We can still assume that either f'(z) < 2
for all x € [0,1] or f'(x) > 2 for all x € [0, 1]; otherwise the Intermediate Value Theorem for
derivatives would imply that there exists a point ¢ € [0, 1] such that f'(c) = 2. If f'(z) < 2
for all x € [0,1], let h(z) = f(x) — 2z. Observe that h'(z) = f'(x) — 2 < 0 for all z € [0, 1]
and h(0) = 0. This implies that the function is strictly decreasing on [0, 1] and f(z) < 2z for
all x € (0,1]. In particular, f(1) < 2, which contradicts the fact that f(1) = 2. Similarly, if
f'(z) > 2 for all x € [0, 1], we argue that f(z) > 2z for all z € (0, 1]. In particular, f(1) > 2,
which is again a contradiction. So there exists a point ¢ € [0, 1] such that f'(c) = 2. O



f) Let f : [a,b] — R be a continuous function on [a, bland let g : [a,b] — R be integrable
on [a, b], with g(z) > 0 for all x € [a, b]. Prove that there exists a ¢ € [a, b] so that ff(fg) dx =
f(e) f: g dz. This result is often referred to as the Extended Mean Value Theorem for Integrals.

Proof. Let h(zx) = fab(fg) dx — f(x) fabgdx for all x € [a, b]; note that h is continuous on [a, b]
since f is continuous on [a,b]. Also, since f is continuous, there exist points z1,xs € [a,b]
where f assumes its minimum m and its maximum M respectively.

Now f(x)g(z) < Mg(x) for all z € [a, b] since f(x) < M and g(z) > 0 for all z € [a, b]. This
implies that fab(fg) dx < fab Mgdx = Mfabgdx = f(x2) fabgd:v. In other words, h(xs) < 0.
Similarly, f(x)g(x) > mg(x) for all z € [a, b] implies that f;(fg) dx > f; mgdr =m f;gd:c =
f(z1) f;gdx. In other words, h(xy) > 0. If h(xy) = 0, let ¢ = 2, and if h(xg) = 0, let ¢ = 5. If
h(z1) # 0 and h(zq) # 0, the Intermediate Value Theorem applied to the continuous function
h yields a point ¢ € [a, b] such that h(c) = 0. In all cases, h(c) = 0 implies the desired equality

2 (fg)dz = f(c) [} g da. i
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